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One of the primary goals that researchers look to achieve through customer base analysis is
to leverage historical records of individual customer transactions and related context fac-
tors to forecast future behavior, and to link these forecasts with actionable characteristics
of individuals, managerially significant customer sub-groups, and entire cohorts. This
paper presents a new approach that helps firms leverage the automatic feature extraction
capabilities of a specific type of deep learning models when applied to customer transac-
tion histories in non-contractual business settings (i.e., when the time at which a customer
becomes inactive is unobserved by the firm). We show how the proposed deep learning
model improves on established models both in terms of individual-level accuracy and
overall cohort-level bias. It also helps managers in capturing seasonal trends and other
forms of purchase dynamics that are important to detect in a timely manner for the pur-
pose of proactive customer-base management. We demonstrate the model performance
in eight empirical real-life settings which vary broadly in transaction frequency, purchase
(ir)regularity, customer attrition, availability of contextual information, seasonal variance,
and cohort size. We showcase the flexibility of the approach and how the model further
benefits from taking into account static (e.g., socio-economic variables, demographics)
and dynamic context factors (e.g., weather, holiday seasons, marketing appeals). We make
an open-source reference implementation of the newly developed method available at
https://github.com/valendin/rfm2lstm.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Anticipating future customer behavior and making individual-level predictions for a firm’s customer base is crucial to any
organization that wants to manage its customer portfolio proactively. More precisely, firms following a customer-centric
business approach need to know how their clientele will behave on different future time scales and levels of behavioral com-
plexity (Gupta & Lehmann, 2005; Fader, 2020): What are they going to do in the immediate future and when do they make
their next transaction with the focal company, if any? Are some of them at risk of stopping doing business with the firm?
How exactly do seasonality and other time-based events influence the propensity of customers to buy?

To address these questions and to assist managers in designing their marketing programs accordingly, the marketing dis-
cipline has produced a rich stream of literature. These contributions include predictive models and techniques for customer
targeting and reactivation timing (Gönül & ter Hofstede, 2006; Simester, Sun, & Tsitsiklis, 2006; Holtrop & Wieringa, 2020),
klaudius.
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market response models for firm- and/or customer-initiated marketing actions (e.g., Hanssens, Parsons, & Schultz (2003),
Blattberg, Kim, & Neslin (2008), Sarkar & De Bruyn (2021)), methods for churn prediction and prevention (e.g., Ascarza
(2018), Ascarza, Iyengar, & Schleicher (2016), Lemmens & Gupta (2020)), as well as a growing literature on customer valu-
ation (e.g., McCarthy, Fader, & Hardie (2017), McCarthy & Fader (2018)) and customer prioritizing (Homburg, Droll, & Totzek,
2008). However, none of these qualify as a (Swiss Army knife-like) general-purpose problem solver that generalizes across
the described decision tasks of managing customer relationships. This article makes a first step towards this direction. We
propose and implement a flexible methodological framework that provides marketing managers with highly accurate fore-
casts of fine granularity both in the short and in the long run. Our method also captures seasonal peaks and customer-level
dynamics and allows to differentiate between different customer groups.

The challenge to derive such individual-level predictions is particularly demanding in the context of non-contractual set-
tings (such as most retail businesses, online media consumption, charity donations). Contrary to subscription-based or con-
tractual settings where customer ‘‘churn” events are directly observable, customer defection in non-contractual business
settings is by definition unobserved by the firm and thus needs to be indirectly inferred from past transaction behavior
(Reinartz & Kumar, 2000; Gupta et al., 2006). The specific challenge in such settings is to accurately and timely inform man-
agers on the subtle distinction between a pending defection event (i.e., a customer stops doing business with the focal firm)
and an extended period of inactivity of their customers, because possible marketing implications are completely different in
each of these situations.

Consider, for example, the situation for a few prototypical customer transaction histories depicted in Fig. 1, which are
from a customer cohort of a large U.S. charity organization we will study in our empirical evaluation section in more detail.
From a managerial perspective, accurately spotting the future activity patterns of such customers is of vital importance
because of their value to the company (Blattberg & Deighton, 1996; McCarthy & Fader, 2018). They were all high frequency
donors in the past; however, as we will further demonstrate in more detail in the empirical evaluation section, the evaluation
of their future with the charity institution will lead us to different conclusions. For instance,

� What would we expect from customers like the first ten individuals 1001–1010, who started out as occasional benefac-
tors, but through an evolving relationship with the firm have developed a more regular transaction1 behavior? Will they
continue this trend; will they eventually turn into the firm’s premium customers?

� Conversely, how about the next ten individuals 1011–1020, who have all made a number of transactions historically, but
recently have been on an unusually long hiatus? Is the customer-firm relationship at risk and are these customers poten-
tial defectors? A timely response is critical in such a situation, because it is generally easier to regain a customer before
their new relationship with a competitor has consolidated.

In this specific domain of customer base analysis, probabilistic approaches from the ‘‘Buy ’Till You Die” (BTYD) model
family represent the gold standard, leveraging easily observable Recency and Frequency (RF, or RFM when including also
the monetary value) metrics together with a latent attrition process to deliver accurate predictions (Schmittlein,
Morrison, & Colombo, 1987; Fader, Hardie, & Lee, 2005; Fader & Hardie, 2009). The simple behavioral story which sits at
the core of BTYD models – while ”alive”, customers make purchases until they drop out – gives these models robust predictive
power, especially on the aggregate cohort level, and over a long time horizon. Extended variants of the original models (e.g.,
Zhang, Bradlow, & Small (2015), Platzer & Reutterer (2016), Reutterer, Platzer, & Schröder (2021)) improve predictive accu-
racy by incorporating more hand-crafted summary statistics of customer behavior. However, including customer covariates
is cumbersome and an approach to account for time-varying covariates has only just recently been introduced by Bachmann,
Meierer, and Näf (2021) at the cost of manual labeling and slower performance. Even advanced BTYD models can be too
restrictive to adequately capture diverse customer behaviors in different contexts and the derived forecasts present cus-
tomer future in an oftentimes too simplified way.

Other options to capture changes between lower- and higher-frequency purchase episodes (as we observe for our cus-
tomers in Fig. 1), or vice versa, are to adopt a dynamic changepoint model (Fader, Hardie, & Chun-Yao, 2004), a simulation
based model of the type presented by Rust, Kumar, and Venkatesan (2011), or to incorporate additional states other than the
absorbing, inactive state as in standard BTYD latent attrition models. The latter way of accounting for nonstationarity in
transaction sequences can be achieved by applying more general hidden Markov models (see, e.g., Netzer, Lattin, &
Srinivasan (2008), Schweidel, Bradlow, & Fader (2011), Romero, van der Lans, & Wierenga (2013)). A Bayesian non-
parametric approach to flexibly model purchasing dynamics depending on calendar time effects, inter-event timing and cus-
tomer lifetime was recently proposed by Dew and Ansari (2018). However, all such approaches come at the cost of additional
model complexity, rising computational cost, and a loss in sufficiency.

In this paper, we offer marketing analysts an alternative to these models by developing a deep learning based approach
that does not rely on any ex-ante data labelling or feature engineering, but instead automatically detects behavioral dynam-
ics like seasonality or changes in inter-event timing patterns by learning directly from the prior transaction history. This
enables us to simulate future transactions at a very fine granular level and attribute them to the right customer (or any sub-
1 For expositional simplicity, we refer to the act of making an order, a donation, or any type of purchase event as a transaction, to charitable contributors,
blood donors, bank clients, households, etc. similarly as customers, and to the charity, bank, or store as the firm.
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Fig. 1. Transaction timing plots of weekly Charity Contributions - twenty example individuals.
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group of the customer-base) and calendar time without prior domain knowledge. We explore the capabilities of this novel
forecasting approach to customer base analysis in detail, and benchmark the proposed model against established probabilis-
tic models with latent attrition, as well as a non-parametric approach based on Gaussian process priors, in very diverse non-
contractual retail and charity scenarios. Our model raises the bar in predictive accuracy on both the individual customer and
the cohort level, automatically capturing seasonal and other temporal patterns.

The paper proceeds as follows. In the next section, we first briefly outline the main characteristics of our approach to
learning from and predicting sequential customer behavior. We also relate back to prior work using deep learning and of
relevance for customer base analysis. Then we introduce our proposed deep learning based model architecture, training
and inference methods. Next, we test the model’s forecasting ability in eight real-life empirical settings that vary in terms
of cohort size, customer attrition, (ir)regularity of inter-event timing patterns, transaction frequency and seasonal variance,
as well as availability of contextual information. Together with the baseline model of simple transaction events, we also
show how to easily extend the model with time-varying and time-invariant customer covariates, to further benefit in pre-
dictive accuracy. We perform robustness checks by varying model training input and output prediction length, we study
individual and group behavior, and demonstrate how these forecasts bring new opportunities for post hoc analysis. Finally,
we discuss the merits and limitations of the proposed approach and offer suggestions for further research.

2. Modelling approach

Based on our initial discussion, an ideal model for customer base analysis in data-rich environments would combine a
robust forecasting capability both in the short and in the long-term with limited engineering requirements at low compu-
tational cost and providing a direct link towards managerial decision-making. Recognizing that traditional statistical fore-
casting models often suffer from poor efficiency when increasing model complexity and heavily rely on manual feature
engineering and data labeling, Table 1 picks up these issues and compares some of the key differences between stochastic
BTYD models and the deep learning approach we present in this section.

To circumvent additional feature engineering when increasing model flexibility, Salehinejad and Rahnamayan (2016) and
Mena, Caigny, Coussement, Bock, and Lessmann (2019) have introduced a recurrent neural network (RNN)2 approach to the
domain of customer base analysis by modeling the evolution of RFM variables over time. However, since the focus still remains
on predicting hand-engineered RFM metrics, such an approach does not fully leverage the automatic feature extraction capabilities
of deep learning methods. Sheil, Rana, and Reilly (2018) take this one step further by allowing the neural network to derive its own
internal representation of transaction histories. The authors demonstrate the performance of several RNN architectures and bench-
mark them against more conventional machine learning approaches for predicting purchasing intent. In a similar context, Toth, Tan,
Di Fabbrizio, and Datta (2017) have shown that a mixture of RNNs can approximate several complex functions simultaneously.
More recently, Sarkar and De Bruyn (2021) demonstrate that a special RNN type can help marketing response modelers to benefit
from the multitude of inter-temporal customer-firm interactions accompanying observed transaction flows for predicting the most
likely next customer action. However, their approach is limited to single point, next-step predictions and to continuewith such fore-
casts into the long-run one must estimate the new model repeatedly with each additional future time step.
2 In contrast to the more common ‘‘feed-forward” neural network where signals propagate from model inputs to outputs all in a single direction, an RNN is a
type of neural network that allows previous signals to feed back and combine with the subsequent input. Letting past signals influence future ones means it
naturally fits the task of modelling future behavior based on previous history.
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Table 1
Comparison of approaches for customer base analysis using historical event data.

Stochastic BTYD models Proposed deep learning approach

Model assumptions rigid, probabilistic process parameters flexible, data-driven machine learning

Transaction flow representation compressed into simple summary statistics full flow of historic event history captured

Feature engineering and data labeling hand-crafted features by model user no ex-ante labeling, automatic feature
detection

Incorporating multiple data streams and (static/
dynamic) marketing covariates

increases model complexity and
computational cost

easy and highly flexible at no significant
additional cost

Detecting purchase dynamics in event histories complicated, requires additional assumptions
and model complexity

flexible, emerges as part of automatic
feature detection

Accounting for customer heterogeneity model-based, parameter estimates of mixture
distribution(s)

implicit, distributed across network
weight vectors

Detail and quality of forecasts (forecasting quantities) less detailed summary statistics fine granular transaction flow
characteristics

Prediction horizon of forecasts focus on long-term predictions both immediate (next transaction) and
long-term perspective

Valendin et al. International Journal of Research in Marketing 39 (2022) 988–1018
We take a different approach inspired by self-supervised3 sequence-to-sequence model architectures developed originally
for Natural Language Processing (NLP) tasks like text generation (Sutskever, Vinyals, & Le, 2014), epitomized by the Google
Translate application. The name, often shortened to seq2seq, comes from the fact that these models can translate a sequence
of input elements into a sequence of outputs. Different seq2seq models can be created depending on how we manipulate the
input data; i.e., we can conceal certain parts of the input sequence and train the model to predict what is missing, to ‘‘fill in
the blanks”. If we always blank only the last element in a historical sequence, the model effectively learns to predict the most
likely future, conditioned on the observed past. Applying this idea to customer transaction records, we can forecast sequences
predicting future behavior. We next present our model architecture in detail.

2.1. Model architecture

To forecast future customer behavior, our model is trained using individual sequences of past transaction events, i.e.,
chronological accounts of a customer’s lifetime. The example in Table 2 describes one such customer’s transaction history
over seven consecutive discrete time periods.4 This particular individual makes a transaction in the first week, followed by
one week of inactivity, then transacting for two consecutive weeks, and so on; in weeks 3 and 4 they also received some form
of a marketing appeal. The two calendar components – the month and week indicators – represent time-varying contextual
information which is shared across the individuals within a given cohort. In addition, in this example we include also an indi-
vidual time-invariant covariate (gender) and a time-varying, individual-level covariate (marketing appeals). This particular cus-
tomer history can then be represented as a sequence of vectors with five elements: the input variable plus the four covariates.
Individual-level covariates are strictly optional – in our empirical study, the Base model is built without any such variables.
Whenever individual covariates are included, we label the model Extended. Note that the model is completely agnostic about
further extensions: all individual-level, cohort-level, time-varying, or time-invariant covariates are simply encoded as categor-
ical input variables, and are handled equally by the model. This property makes our model extremely flexible in dealing with
diverse customer behaviors observed across multiple contexts and platforms.

A schematic high-level representation of the proposed model architecture is shown in Fig. 2. The structure of the model
begins with its input layers5 for (i) the input variable (i.e., transaction counts) and (ii) optional covariates (time-invariant or
time-varying inputs). These variable inputs enter the model through dedicated input layers at the top of the model’s architec-
ture and are combined by simply concatenating them into a single long vector. This input signal then propagates through a
series of intermediate layers including a specialized LSTM, or Long Short-Term Memory RNN neural network component6,
which stores a dynamically updated internal representation of the input sequence presented to the network thus far. This
non-stationary representation of the customer’s behavior is distributed across numerous cell state values in the LSTM compo-
3 A self-supervised model is learning to perform a task without a set of true labels being provided, typically by learning to reconstruct the input data which
has been corrupted by noise or manipulated in another way.

4 We chose the default unit of time in our empirical studies being one week and aggregate input data into weekly buckets, because such a granularity
translates into convenient input data and model size while preserving a high level of dynamic detail. In most practical situations, the choice of granularity level
will be guided by managerial considerations. In our empirical model evaluation we will illustrate this using monthly aggregation.

5 A ‘‘layer” is a group of artificial neurons that process signals in parallel. Individual neurons combine signals from a previous layer and transform the result
with a non-linear function before passing as output to the neurons in the following layer. A typical network has at least one input layer and an output layer,
with several ‘‘hidden” layers in between, together forming the ‘‘depth” of a neural network, which is why the term ‘‘deep learning” is used in the context of
neural networks with many layers. We can think of these layers as steps in an execution of a highly parallel computer program.

6 Note that this memory module is typically composed of several stacked layers of LSTM cells, each layer passing its results to the next one. In Appendix
Section A we present details of the properties of the specialized LSTM neural network in the context of modeling customers’ transaction sequences. It also gives
name to our proposed model: the Base LSTM model of the transaction stream variable only, and the Extended LSTM with covariates.
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Table 2
Transaction history of one sample customer used for network training.

Fig. 2. Network schema.

Valendin et al. International Journal of Research in Marketing 39 (2022) 988–1018
nent layer(s). We then expand the model’s computational capacity even further by propagating the LSTM component output
through several fully-connected7 layers.

Finally an output prediction8 is produced by a softmax layer, which normalizes the raw output z derived by a fully con-
nected, k neuron-sized layer into a multinomial (categorical) probability distribution over the set of k classes9. These k classes
correspond to our target variable and all its k observed outcomes, in our example: How many transactions will an individual make
during the next time period? Each class label therefore corresponds to the probability of observing i� 1 (i ¼ 1; . . . ; k) transactions
in the next unit of time. Similar to a multinomial logit regression the softmax normalization is given by:
7 A fu
weighte

8 Thi
empiric
compar

9 Soft
helping
softmaxi zð Þ ¼ ezi

Xk

i¼1

ezi

; ð1Þ
lly-connected layer, often also called ‘‘dense”, is a neural network layer where each of m inputs units connects to each of n output units, forming m � n
d connections (the trainable parameters of the network).
s model setup can be extended to predict multiple output variables, such as monetary transaction values or intertransaction timing. However, in our
al study we focus on forecasting a single variable: the number of transactions within a discrete time period, which serves us best for a like-for-like
ison with established benchmark methods.
max is the recommended choice if the goal is to approximate a probability distribution, because of the favourable properties of the error gradient,
the model adjust incorrect outputs faster (Goodfellow, Bengio, & Courville, 2016).
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and the output of the softmax layer at any given time step t is a k-tuple p xt ¼ c1ð Þ; p xt ¼ c2ð Þ; . . . ; p xt ¼ ckð Þð Þ for the proba-
bility distribution across the k neurons of the output layer. We set the number of neurons k in the softmax layer to reflect the
transaction counts observed across all individuals in the training data: as is the case with any ‘‘forward-looking” approach,
the model can only learn from events that are observed at some point during estimation; i.e., if in the calibration period indi-
viduals only make between zero and three transactions during any of the discrete time periods, then a softmax layer with
four neurons is sufficient: the neurons’ respective outputs represent the inferred probability of zero, one, two and three
transactions.10

With each vector read as input, the model’s training objective is to predict the target variable, which in this self-
supervised training setup is just the input variable shifted by a single time step. Using the example from Table 2, given
the sequence of input vectors starting with the first week of January, i.e. [1,January,1,F,0], [0,January,2,F,0], [1,Jan-
uary,3,F,1] . . ., we train the model to output the target sequence 0,1,1,. . . equal to the rightmost column in Table 2. With
each input vector processed by the network, the internal memory component is trained to update a real-valued cell state vec-
tor to reflect the sequence of events thus far.

We estimate the model parameters by minimizing the stochastic mini-batch11 error between the predicted output and the
actual target values. At the time of prediction, we fix the model parameters in the form of weights and biases between the indi-
vidual neurons in the deep neural network, but the cell state vector built into the structure of the LSTM ‘‘memory” component is
nonetheless being updated at each step with parts of the latest input, which helps the model learn very long-term transaction
patterns. Each prediction is generated by drawing a sample from the multinomial output distribution calculated by the bottom
network layer; our model therefore does not produce point or interval estimates, each output is a simulated draw12. Each time a
draw from this multinomial distribution is made, the observation is fed back into the model as the new transaction variable
input in order to generate the following time step prediction, and so on, until we create a sequence of predicted time steps
of desired length. This so-called autoregressivemechanism in which an output value always becomes the new input is illustrated
in Fig. 2 with the dotted arrow bending from the output layer back to the input. Fig. 2 also shows that we feed each input first
into a dedicated embedding (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013)13 layer. Using embeddings is not critical to our
approach, but by creating efficient and dense (real-valued) vector representations of all variables it already serves to better sep-
arate useful signals from noise and to condense the information even before it reaches the memory component (see also
Chamberlain, Cardoso, & A (2017) for a similar approach). It should be highlighted that this setup of inputs with associated
embeddings is completely flexible and allows for the inclusion of any time-varying context or customer-specific static variables
by simply adding more inputs together with their respective embedding layers.

2.2. Formal model

The goal is to generate forecasts for sequences of n elements X1; . . . ;Xnð Þ where for each time step t the forecast Xt is a
multinomial random variable with k possible outcomes c1; . . . ; ck. We train the model to ultimately make inferences about
the conditional probabilities p Xt ¼ cijX1 ¼ x1; . . . ;Xt�1 ¼ xt�1ð Þ for each time step t and class ci, where x1; . . . ; xt�1 are the real-
izations of X1; . . . ;Xt�1 at prior time steps. For generated sequences of length n, the joint distribution14 can then be recon-
structed via the chain rule:
10 We
kmight
it is eas
remain
11 A m
smaller
12 To
expecte
13 Em
the num
14 The
need co
p x1; . . . ; xnð Þ ¼
Yn
t¼2

p Xt ¼ xtjX1 ¼ x1; . . . ;Xt�1 ¼ xt�1ð Þ � p X1 ¼ x1ð Þ ð2Þ
During training the model learns to output a multinomial probability distribution so that it maximizes the likelihood of
reproducing the true class labels. In a forward pass, the model outputs the predicted distribution ph cijx1; . . . ; xt�1ð Þ where h
represents the set of all parameters of the model at this point, and ci ranges over the k possible outputs at time step t. The loss
of a given input sample is then given by the negative log-likelihood of the joint distribution:
L ¼ �
Xk

i¼1

I xt ¼ cið Þ � log ph cijx1; . . . ; xt�1ð Þð Þ ð3:1Þ
where I is an indicator function that is equal to 1 when xt ¼ i and 0 otherwise, and xt is the realization of Xt , therefore:
can easily relax this assumption and extend the range of model outputs, for example, to anticipate future additional training examples where values of
be greater, to later use such an expanded dataset to fine-tune a pre-trained model. When no examples of a given category are observed during training,
y for the model to learn that the output probability of such an event is always equal to zero, and the associated part of the model capacity will effectively
unused.
ini-batch refers to a small subset of training samples we use to calculate the error gradient determining how to adjust the model parameters - the
the subset, the less representative and more noisy the gradient.
make the predicted transaction sequences robust against sampling noise, we repeat this process for each customer several times and take the mean
d number of transactions in a given time step as our final result. We describe how this benefits the prediction accuracy in the Appendix Section B.3
bedding layers are used to reduce data dimensionality, compressing large vectors of values into relatively smaller ones, to both reduce noise and limit
ber of model parameters required.
product contains a term for every t from 1 to n, either unconditional for t ¼ 1 or conditional for t P 2. The reason it starts at t ¼ 2 is that only then we
nditional probabilities. We add the final term explicitly: p X1 ¼ x1ð Þ.
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L ¼ � log ph xtjx1; . . . ; xt�1ð Þð Þ ð3:2Þ

Each iteration of the model training begins with the network calculating the predicted output for a small batch of input

samples, followed then by the adjustment of all model parameters (weights and biases) using the gradient of the error, start-
ing with the parameters in the final output layer and then propagating backwards through all preceding network layers
(Rumelhart, Hinton, & Williams, 1986). After each input sample has been used to update the network parameters once –
a segment of training called an epoch – we monitor the progress of the training by calculating the validation error using a
separate set of input samples, which are otherwise not used during training. Although the validation loss is not a perfect
approximation of the model’s predictive performance, we show in Appendix C that models with lower validation loss often
produce more accurate holdout predictions. As long as the validation error keeps decreasing, we continue iterating over
batches and epochs, until we reach a minimum. More details about the model’s technical implementation, the training
and inference procedure, are provided in Appendix B.

2.3. Autoregressive simulation of predictions and endogeneity

Our model lets us simulate future transactions of an individual step-by-step by drawing from the output probability dis-
tribution conditional on a previously observed sequence of input time steps. To generate a holdout simulation, we must first
input the individual’s calibration input sequence into the model, one time step after another. Intuitively, this brings the mod-
el’s internal state – including the values stored as the cell state in the LSTMmemory module – to represent the observed cus-
tomer history. Once the final step of the calibration has been processed, we draw a sample from the output multinomial
distribution to create the first holdout prediction time step. This realization feeds back into the model as a new input to pro-
duce the next time step prediction and so on, until we create a sequence of interdependent simulated draws of desired
length. If the model is trained with additional covariates, we input their values into the model at each simulation time step.
Conditioned with the observed covariate values the model simulates the actual holdout as we demonstrate in our empirical
study, or one can specify custom covariate values to simulate ‘‘what-if” scenarios. We include two examples of such future
simulation scenarios conditioned with predefined holdout covariate schedules in the Appendix Section E.

Marketing managers are particularly interested in accounting for marketing interventions when evaluating future
decision-making scenarios. The Charity Contributions setting we introduce in the next section includes the contact records
from a major US nonprofit organization where reverse causality cannot be completely excluded. Even though we are not
aware of any rules applied in this particular business setting, there are cases where not only the donors are affected by
the appeals from the charity, but the charity manager might also tailor the marketing interventions according to some tar-
geting rule that is a function of previous charitable transactions. Such situations would imply that the marketing variable is
likely endogenous.15 Endogeneity is important to consider when the focus is on disentangling causal relationships among the
variables involved and to derive policy-making implications. However, our key objective is to improve holdout predictive per-
formance, rather than building a descriptive model. As demonstrated already by Ebbes, Papies, and van Heerde (2011, p. 1116),
holdout sample validation and superior predictive performance favors regression estimates that are not corrected for endogene-
ity. Similarly, Schweidel and Knox (2013, p. 479) and more recently McCarthy and Fader (2018) and Bachmann et al. (2021) also
find that controlling for endogeneity is of minor importance when high predictive accuracy of future forecasts is the primary
objective. However, as opposed to forecasts made by BTYD models that are only conditioned on observed transaction data,
we acknowledge that when it comes to planning conditional future marketing actions a more sophisticated approach is neces-
sary than our autoregressive simulation setup. This is particularly relevant in cases where marketing actions are conditioned on
previous customer activities, which requires to explicitly link marketing outcome variables to a policy function.

3. Empirical performance evaluation

In this section, we introduce the datasets, present the evaluation metrics, and describe the benchmark models.

3.1. Datasets

To demonstrate the capability of the LSTM approach as a forecasting tool for sequential data and to show its flexibility in
incorporating covariates, we select a broad range of empirical scenarios. Two datasets represent philanthropic behavior
(Charity Contributions and Blood Donations), the remaining six are purchase transaction datasets with varying calibration
lengths, transaction frequencies, and cohort sizes (Electronics Retailer, Multichannel Merchant, CDNOW, Groceries, Yogurt
and Sunscreen Purchases). The key descriptive statistics summarized in Table 3 already point at substantial differences
between the datasets: the Yogurt Purchases dataset is characterized by high transaction frequency with only moderate levels
of inactivity, others represent transactional data for customer cohorts with lower activity rates – a familiar setting for
customer base analysts. The Charity Contributions and Multichannel Merchant settings allow us to study the influence of
individual-level time-varying marketing interventions, and in the Electronics Retailer data case we observe a rich set of
other scenario in our empirical applications section with marketing interventions, the Multichannel Retailer dataset, is using pre-scheduled catalog
s, where endogeneity is certainly not present.
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Table 3
Descriptive statistics of the used datasets.

Calibration period Holdout period

Cohort Length Mean Non- Length Mean
Dataset size Clumpy rWM Seasonality (weeks) events repeaters (weeks) events Inactive

Charity Contributions 21,166 2% 2.1 0.8 181 2.2 52% 53 0.3 81%
Electronics Retailer 3,782 24% 0.5 0.3 260 4.5 23% 53 0.6 72%
Blood Donations 11,887 1% 2.2 0.4 116 1.9 55% 105 0.8 67%
CDNOW 23,570 8% 0.9 0.3 39 2.1 59% 39 0.9 70%
Groceries 1,525 24% 1.8 0.3 52 4.7 38% 52 2.2 66%
Yogurt Purchases 31,216 52% 1.5 0.1 156 43.7 6% 52 10.6 46%
Multichannel Merchant 1,379 10% 0.9 0.4 52 1.2 83% 338 0.8 69%
Sunscreen 7,794 3% 0.8 1.6 104 1.8 57% 104 0.8 61%
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individual-level customer covariates and background information. These eight real-world empirical settings allow us to
demonstrate the robustness of the proposed method.16

In addition to the descriptive statistics provided by Table 3, for each dataset we also provide a cohort-level summary
statistic rWM proposed by Wheat and Morrison (1990) for measuring inter-event timing regularity, calculated as imple-
mented in the R package BTYDplus (Platzer, 2016), as well as the proportion of individuals classified as ‘‘clumpy” according
to the measure proposed by Zhang et al. (2015).17 To summarize the seasonal profile of a given transaction setting, we calcu-
late the Seasonality statistic for aggregate weekly transactions during the observed calibration period, calculated as the mean
absolute deviation (MAD) from the median weekly aggregate repeat customer transactions (we exclude initial transactions to
better capture repeat customers):
16 Fur
et al., 1
17 Clum
switchi
Seasonality ¼ 1
n

Xn
t¼1

Art � Armedianj j
Armedian

; ð4Þ
where Armedian is the median of repeat weekly transactions during calibration, Art is the actual volume of transactions at time
t, and n is the number of discrete time periods in the calibration period. A transaction setting exhibiting a Seasonality score of
less than 0.5 can then be said to have low seasonality (e.g., CDNOW), a Seasonality between 0.5–1.0 describes a mildly sea-
sonal setting (e.g., Charity Contributions), and a Seasonality above 1.0 indicates a strongly seasonal transaction scenario (e.g.,
Sunscreen).

The used datasets are characterized as follows:

� Charity Contributions: A widely used benchmark dataset examined extensively in the customer base analysis literature
(see, e.g., Schweidel & Knox (2013) and Platzer & Reutterer (2016)), provided by the Direct Marketing Educational Foun-
dation (see Malthouse (2009) for more details). This dataset contains the contribution histories of a cohort of 21,166
donors to a large U.S. charity organization acquired during the first half of 2002 and observed over a time span of 4.5 years,
as well as the associated individual direct marketing solicitation records. It is characterised by a low holdout activity of
just 0.3 donations on average together with a relatively high Seasonality of 0.8. The rWM statistic of 2.1 points at a signif-
icant degree of timing regularity, which is confirmed by a very low share of ‘‘clumpy” customers.

� Consumer Electronics Retailer: 3,782 individual household transaction records from a major U.S. durable goods retailer
observed from December 1998 through November 2004. The quasi cohort is part of the ISMS durable goods dataset
(Ni, Neslin, & Sun, 2012) and consists of customers who made their first transaction during the first year of the observa-
tion period. For each household we observe demographic covariates such as age, income, and gender of the head of the
household, the number of children present, their age and gender. With a rWM statistic of 0.5 this dataset is an example of
irregular transaction behavior.

� Multichannel Merchant: A set of transaction histories collected from 1,379 customers of a multichannel catalog merchant.
This cohort was examined recently by Bachmann et al. (2021); the data also include time-varying catalog mailings sent to
individual clients during the observation period. All customers made their first purchase during the initial six months of
the observation period and were observed from the beginning of 2005 until mid-2012. With a rWM parameter of 0.9 the
inter-transaction times are close to being randomly distributed. This very low transaction frequency scenario allows us to
showcase the longest prediction period of 6.5 years (338 weeks).
thermore, in Appendix Section D we present a two by two simulation study using synthetic transaction data generated by the Pareto/NBD (Schmittlein
987), the canonical BTYD model which also serves us as one of our benchmark models.
py or also ‘‘binging” transaction behavior is characterized by inter-event timing patterns that are clumped together and typically emerges from

ng between ‘‘hot” and ‘‘cold” activity states (see also Schwartz, Bradlow, & Fader (2014))
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� Blood Donations: A cohort of 11,887 new blood donors who donated for the first time during the year 2015 and were
observed through March 2019. The data are provided by a national branch of the Red Cross organization for the purpose
of this study. For this dataset, we used a longer holdout period of 2 years (107 weeks). Similar to the other charitable data-
set, the rWM regularity parameter is 2.2, i.e., this cohort is characterized by rather regular donors.

� CDNOW: Another well-known dataset from an online music store which includes 23,570 customers acquired in the first
quarter of 1997 and observed over the following 1.5 years. This dataset has been benchmarked extensively also in Fader
et al. (2005), Abe (2009), Zhang et al. (2015), Platzer and Reutterer (2016). With a calibration period of just 9 months (the
shortest in this study), 70% inactivity in the holdout, a rWM parameter of 0.9 indicating random inter-event timing behav-
ior overall, this dataset poses a challenge even for advanced forecasting methods.

� Groceries: A quasi cohort was constructed in this case since customer acquisition dates were not available: Following the
prescription in Platzer and Reutterer (2016) we select customers who made a first recorded transaction during the initial
3 months of 2006, but have not been active in the 2 years prior. The rWM parameter of 1.8 suggests a significant regularity
in the purchasing behavior. This is the smallest dataset in this study, with 1,525 individuals, and also one of the shortest,
with a calibration of just 1 year.

� Yogurt Purchases: A dataset of household purchase records is provided by a global consumer research company. We con-
structed a quasi cohort of 31,216 households (the largest in this empirical study) by selecting those with first recorded
transaction made within the first observed year, giving us a total calibration period of three years and a one year holdout.
Compared to other datasets, these transactional data are characterized by higher activity rates. An rWM statistic of 1.5 indi-
cates customers’ Yogurt Purchase timings being more regular than random.

� Sunscreen: A cohort containing 7,794 customers who first purchased a bottle of sunscreen during the year of 2015. Sun-
screen is a highly seasonal product (Seasonality score of 1.6), with the vast majority of transactions occurring during the
summer months. However, transaction frequencies are very low (only 1.8 mean transactions during the estimation per-
iod) and according to a rWM parameter value of 0.8 more irregular at the cohort level. We use a 2-year calibration period
and predict the behavior in the following 2 years.

3.2. Implementation and benchmarks

To demonstrate howwe estimate our model and generate forecasts we provide an open-source reference implementation
available at https://github.com/valendin/rfm2lstm. The predictive model can be estimated in minutes on a regular laptop
computer and moving from the base to the extended LSTMmodel requires no significant additional modelling effort. To eval-
uate the performance of our approach, we use three established benchmark models that are readily available as well-
documented open-source analytical tools. These models are as follows:

� The ‘‘workhorse” probability model for customer base analysis, the Pareto/NBD (Schmittlein et al., 1987), estimated by the
hierarchical Bayesian implementation using Markov Chain Monte Carlo (MCMC) sampling of model parameters from the
R package BTYDplus (Platzer, 2016).

� A generalization of the Pareto/NBD model, the Pareto/GGG (Platzer & Reutterer, 2016), which can leverage individual dif-
ferences in inter-event timing patterns for improved holdout predictions in the presence of timing regularity in the data.
Here we also used the MCMC implementation from the BTYDplus package.

� A Bayesian non-parametric approach to customer base analysis, the Gaussian Process Propensity Model (GPPM; Dew &
Ansari (2018)). This model integrates two sets of predictors modelled through latent functions that jointly determine
transaction propensity related to calendar time, inter-event time, and customer lifetime. We used the Stan implementa-
tion provided in the Web Appendix C of Dew and Ansari (2018).18

3.3. Evaluation metrics

To evaluate the predictive performance at the individual level, we report the Root Mean Squared Error (RMSE) as a pre-
ferred metric when the aim is to minimize the mean forecasting error, which is the case for methods examined here.19 The
RMSE also penalizes larger errors more than smaller ones, which is particularly relevant in scenarios with low event frequen-
cies. For example, in our weekly-aggregated Charity Contributions setting, taking the median value implies forecasting mostly
zero events for all individuals, a very poor prediction, which would nevertheless ‘‘outperform” all models in this study (with the
exception of the LSTM) in terms of MAE.
18 During the GPPM estimation we faced a performance bottleneck related to Hamiltonian Monte Carlo (HMC) sampling, a serial process from complexity
class O n3

� �
where n is the length of calibration. For the Yogurt dataset with 159 calibration time steps, 800 HMC iterations took approximately 8 days on a

5 GHz CPU. This can be circumvented with sub-sampling at some accuracy cost. Because in the Yogurt dataset the total number of transactions strongly
correlates with customer lifetime and calendar time, we also removed the lifetime component from the model, otherwise it would not converge. For other
datasets, such manual model adjustments are not necessary, however may potentially be beneficial.
19 The often used Mean Absolute Error (MAE) is only appropriate for forecasts of the median (Hanley, Joseph, Platt, Chung, & Belisle, 2001).
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At the aggregate level, we report the forecast bias calculated as the percentage of over- or under-forecasting of the
observed accumulated weekly transactions. Unbiased forecasts are considered important to correctly estimate future rev-
enue streams and to facilitate related demand planning. Further, an accurate estimate of the total aggregate customer trans-
actions expected for customer cohorts in a given time horizon is an important indicator for deriving the overall value of a
company’s customer base (Blattberg & Deighton, 1996; McCarthy et al., 2017).

Weekly transaction volumes often show strong seasonal or other cyclical patterns. To assess how accurately the overall
seasonal pattern of transaction flows is captured, we propose the Mean Absolute Percentage Error (MAPE). MAPE is a mea-
sure of variance, calculated as the mean difference between the actual At and predicted Pt transactions at time unit t:
20 Add
M ¼ 100%
n

Xn
t¼1

At � Pt

Amean

����
���� ¼ 100%

Xn
t¼1

At � Ptj j
Xn
t¼1

At

ð5Þ
The importance of forecasts showing low values of MAPE can hardly be overstated. Managers determine stock based on
expected demand and unavailable products may lead to customer switching and lost profits, while excess unsold inventory
carries additional labour and storing capacity costs and possibly also losses due to perishability (Balachander & Farquhar,
1994). A lower MAPE also implies a more accurate anticipation of aggregate market volatility, which helps to reduce such
over- and under-stocking costs compared to a high MAPE prediction.

4. Results

In this section we report the findings from the performance analysis of our proposed model when applied to the above-
described datasets. The evaluation strategy is as follows: In each transaction setting we train a Base LSTM model using the
customer event timing sequences alone (together with the calendar time information) and compare the results with those
derived from the benchmark models. Where additional covariates are available, we train an additional Extended LSTMmodel
using the training data enriched with individual time-varying covariates (Charity Contributions & Multichannel Merchant
with actual marketing appeals) or static customer demographic information (Electronic Retailer with time-invariant
covariates).20

A performance summary of our empirical benchmarking study is given in Table 4, with the top score per dataset and per-
formance metric in bold, highlighting the leading performance of the LSTM model across all three metrics (RMSE, bias,
MAPE). Tables 12 and 13 in Appendix Section F document the performance lift in more detail.

4.1. Individual-level predictions

Next, we take a closer look at the predictive performance of our proposed model at the individual level and discuss how
well the LSTM model does to accurately spot customer groups important to the firm. Let us consider the example customers
from the Charity Contributions setting we already highlighted in Setion 1. Upon inspection of the Actual Scenario in their
respective transaction timing plots in Fig. 3, sub-plot (a), we note that these two groups of customers indeed differ in their
holdout period activity: First, individuals 1001 to 1010 who begin their relationship with the firm as sporadic customers, but
end up developing an ever more frequent transaction habit as time goes on. Since these customers turn out to be among the
firm’s future premium customers, they present an opportunity for the manager who wants to ensure this favourable rela-
tionship continues to strengthen, perhaps by providing them with the best customer experience possible, or simply by keep-
ing up the current level of service. For the purposes of this study, we define the opportunity group as customers who make
transactions more frequently in the holdout than during the calibration period.

On the other hand, the remaining individuals 1011–1020: Recurring customers historically, who however turn out to
have defected already at the time of the forecast. Losing such previously frequent returning customers means the firm incurs
a significant loss, and it is of crucial importance for the manager to know, as soon as possible, whether they are likely to
churn. We call this group customers at risk, and define it as those individuals with at least average historical transaction
frequency who do not return to make a single transaction in the holdout period.

4.1.1. Opportunity customers
Across our eight real-life scenarios the opportunity group accounts for over 59% of total holdout period transactions. The

first ten individual members of the Charity Contribution scenario depicted in Fig. 3 (samples 1001–1010) belong to this cus-
tomer group and together account for 99 transactions during the holdout period. While the Pareto/NBD attributes a signif-
icant number of transactions to these customers, it is not able to make a proper distinction between this and the second
group of customers at risk (samples 1011–1020), who in fact remain inactive in the holdout: The Pareto/NBD estimates less
itionally, we present the result of a monthly-aggregated model in the case of Charity Contributions to investigate the effects of input data granularity.
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Table 4
Results summary: RMSE, bias, MAPE. Best results per dataset in bold.

* Not directly comparable with the other Charity Contributions models due to different aggregation.
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(39) transactions for these ten opportunity group customers than for the other ten customers at risk (43). The Pareto/GGG
improves on this result (estimated 44 opportunity transactions vs. only 12 for the at risk group), while the GPPM does not
(36 opportunity vs. 35 at risk). The Base LSTM offers a much improved prediction, closer to the actual high opportunity trans-
actions (59), with only 5 transactions for the customers at risk. Leveraging also the records of individual-level marketing
interventions allows the Extended LSTM model to refine the result further (65/4).

To generalize this perspective and to examine the models’ ability to correctly identify the opportunity customers, we
compute F1-scores as a measure of classification accuracy and report them along with Precision and Recall in Table 5. Five
times out of eight, the Pareto/NBD and Pareto/GGG fail to identify any such customers (denoted by —), which occurred three
times for the GPPM, and in just two cases (Multichannel Merchant and Sunscreen) for the Base LSTM model.21 Across the
eight scenarios, on average, the Base LSTM is 57% better at spotting opportunity customers than the best alternative benchmark
model (Pareto/GGG) as per the F1 score. The individual RMSE, aggregate bias, and MAPE scores improve by 3.3%, 2.1% and 7.6%,
respectively. These findings illustrate the limitations of Pareto/NBD type models in dealing with non-stationary behavior other
than attrition, but such dynamics are easily captured by our neural network model without any additional changes in the basic
setup. We also notice an extra boost in predictive performance by moving from the Base LSTM model to the Extended LSTM,
meaning that including covariates additionally helps in accurately spotting these customers.
21 None of the examined models is able to identify any of the handful of opportunity customers in the Multichannel Merchant scenario. Both this and the
Sunscreen dataset present a challenging setting due to the extremely low transaction frequency of just 1.2 and 1.8 events during calibration per customer on
average, respectively.
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Fig. 3. Individual Charity Contributions: actual, Pareto/NBD, Pareto/GGG, GPPM, Base LSTM, Extended LSTM.
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4.1.2. Customers at risk
The Fig. 3 top-left plot (a) of the Actual Scenario shows that the individuals ‘‘at risk” (sample 1011–1020) remained inac-

tive throughout the holdout period. This is contrary to the expectations of the Pareto/NBD model which is mislead by their
high frequency and relatively low recency and assumes that said customers are still ‘‘alive” and thus wrongly estimates a
high number of future transactions in the holdout. Consistent with the observation of Platzer and Reutterer (2016) that
accounting also for the regularity of purchasing helps to better spot defection, the Pareto/GGG improves on this projection
again, while the GPPM does not, but the flexible Base LSTMmodel spots the change in transaction pattern better still, and the
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Table 5
Opportunity customers: F1 score, precision and recall.

Valendin et al. International Journal of Research in Marketing 39 (2022) 988–1018
Extended LSTM leverages marketing interventions to improve the forecast further. Note that there is no explicit terminal
‘‘churn state” modelled by the LSTM, which acknowledges that there remains ‘‘always a share” (Rust, Lemon, & Zeithaml,
2004) in non-contractual business settings, so some probability of the customers being alive is always preserved (e.g., in
the case of customers No. 1012, 1013 and 1014).

We summarize the prediction accuracy for the customers ‘‘at risk” in Table 6, presenting the performance uplift brought
by the Base LSTM model compared to the other three benchmark models, averaged across all eight empirical settings. By
grouping individuals inactive in the holdout according to their calibration period transaction frequency, we arrive at five
groups of customers at risk.22 The green shading used to highlight the most improved customer groups reveals the fact that
the more frequent the churned customers were during calibration, the more does the Base LSTM model improve the individual
prediction accuracy (RMSE) as compared to the benchmark models. This is good news for the manager who wants to protect the
firm’s relationship with its most frequent customers.
22 The 50th percentile group is formed of customers inactive during holdout with at least average calibration period frequency, the 33rd percentile group
contains the most frequent third of inactive customers, and so on. These five customer subgroups represent 19%, 8%, 7%, 2%, and 1% of total customers
respectively averaged across our eight empirical scenarios, accounting for 26%, 16%, 14%, 5%, and 3% of all past (calibration period) transactions on average,
respectively.
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Table 6
Customers at risk: performance lift of Base LSTM vs benchmark models, broken down by calibration period transaction frequency
percentile.
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4.2. Overall performance and capturing purchase dynamics

As summarized in the results Table 4, we find the LSTM model performs best in all eight empirical scenarios, with most
individual-level forecasting improvement in higher frequency transaction settings like Groceries and Yogurt Purchases, and
less improvement in low frequency settings like Blood Donations and Sunscreen. We also notice that using monthly instead
of weekly aggregation of input sequences in the case of the Charity Contribution dataset does not have a significant effect on
the prediction accuracy in terms of RMSE and bias. Overall, individual-level RMSE improves by an average 6% across all 8
settings, compared to the Pareto/NBD (4% and 9% compared to Pareto/GGG and GPPM, respectively). As for the two
cohort-level accuracy metrics, the Base LSTM model is particularly strong, with an average aggregate bias of just 2% across
all scenarios (18%, 15% and 26% for Pareto/NBD, Pareto/GGG and GPPM, respectively). The MAPE is improved most by the
Base LSTM in the more seasonal settings like Multichannel Merchant or Sunscreen, and is reduced by 44% on average overall,
compared to the next best benchmark, the Pareto/GGG. This means that on an average week, the LSTM is nearly twice as
accurate in predicting the expected aggregate weekly transaction volume. For further comments on the relationship between
the characteristics of input data and the LSTM model performance, see Appendix Section F.

Let’s further examine the Charity Contribution scenario. The plot in Fig. 4 tracks the actual weekly recurring events (solid
dark line) on the cohort level and compares them to the expected aggregated numbers estimated by the Base LSTM model
(magenta line), along with the corresponding Pareto/NBD estimates (dashed line).23 From inspecting the aggregate-level plot
it is apparent that the Base LSTM model captures the seasonality pattern including the high variance period around December/
January very well, which is reflected in lower MAPE scores, while remaining much less prone to over- and under-forecasting
bias than any of the benchmark models. In many similar transactional scenarios, periods of high activity – the ‘‘peak season”
– represent a very significant portion of yearly revenue. We investigate our model’s ability to capture such important temporal
features of customer activity in the following subsections.

4.2.1. ‘‘Christmas Shopping”: Forecasting peak season
Being able to project fluctuations such as seasonality accurately and to capture these patterns automaticallywithout any a

priori definition or labeling is a powerful core benefit of our LSTM model, because the domain expertise required to define
seasonal effects labels manually is at best cumbersome if not impossible to accomplish in any given business scenario.
For example, seasonal effects are not necessarily ”tied” to calendar time, but often depend on some other factors that are
not under the control of the analyst, such as weather or temperature conditions, or the firm’s marketing actions. Capturing
seasonality, however, can be crucial for the financial success of the firm: under-stocking means you will miss out on poten-
tial sales and over-stocking represents wasted resources that could have been productively used elsewhere.

Let’s illustrate the benefits of automatic feature learning by zooming in on the season that can make or break consumer-
focused companies: holiday shopping. In Table 7 we compare the total actual number of transactions encountered in our
eight datasets for the five-week period leading up to the holidays each year (denoted as ”Christmas Transactions”) with those
predicted by the models under investigation for these time windows. As Table 7 clearly documents, frequent, seasonal cus-
tomer behavior typically associated with holiday shopping is captured extremely well by the Base LSTM model compared to
all benchmark models, reducing the overall amount of over- or under-prediction (bias) by double digit percentage points
(pp) in every scenario except the Multichannel Merchant dataset (with a smaller improvement of 6 pp). Strongly seasonal
scenarios such as Charity Contributions and Sunscreen24 see the largest improvements of 49 pp and 450 pp, whereas scenarios
without a significant seasonal pattern like CDNOW and Groceries only improve by 10 pp and 29 pp, respectively. These results
23 For the tracking plots of the remaining datasets see the Online Appendix, Fig. 1.
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Fig. 4. Tracking plot of weekly Charity Contributions.

Table 7
Christmas Period Forecast: Aggregate transactions, RMSE and bias, LSTM vs benchmark models, best result per dataset in bold.
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are remarkable, because the deep learning model was not informed that there was something like a ”holiday season” but it
directly inferred this from the observed stream of transaction data.
24 The Sunscreen scenario represents a case where seasonality is ‘‘reversed” – most of the product is sold during the summer, with a yearly low around
Christmas. This documents our model’s ability to automatically learn to forecast the ‘‘valleys” just as well as the ‘‘peaks”.
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Table 8
When Will They Make The Next Purchase: Mean Next Inter-Transaction Time (NITT) Prediction, bias, and individual-level NITT RMSE, LSTM
vs benchmark models, best result per dataset in bold.
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4.2.2. ‘‘When Will The Next Transaction Occur?”
Our proposed self-supervised approach is also flexible enough to detect many other dynamic transaction patterns

observed during model calibration, which can be leveraged to improve predictions. As demonstrated previously by
Korkmaz, Kuik, and Fok (2013) or Holtrop andWieringa (2020) using BTYD models, one such feature is the timing of the next
purchase: instead of looking into a distant future, managers are eager to know when their customers are expected to make
their next transaction (if any), in order to consider possible reactivation initiatives in case a customer is ”overdue”. Our
model can inform managers about this by combining multiple forecast simulations of each customer’s future. To examine
how well the model performs in correctly detecting the next purchase timing, we calculate the mean Next Inter-
Transaction Time NITT (in weeks following the end of the respective calibration period) across all customers as an aggregate
metric and compare it to the actuals. To measure the individual level performance, we calculate the RMSE for the estimated
(or simulated) individual-level NITTs.25

The results in Table 8 clearly show the Base LSTM model’s exceptional performance in this regard: its predictions deviate
from the true NITT by just 2.8% on average across the eight empirical scenarios (with an average bias of 11.8%, 13.2% and
19.2% for the Pareto/NBD, Pareto/GGG and GPPM, respectively), and it can also attribute the correct NITTs to individuals
quite accurately, as is expressed by the consistently lower NITT RMSE values. We also note that additional covariates again
25 For LSTM models, we measure the NITT by averaging over the simulated first transactions, for the other benchmarks, we track the cumulative transaction
count for each individual customer in the holdout period, marking the first transaction in the period where the count reaches a threshold of one.
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help the Extended LSTMmodel to refine the forecasts further, improving on 7 out of 9 measured scores in the three scenarios
with an Extended LSTM model, compared to the Base LSTM model.

4.3. Calibration length sensitivity

The above-demonstrated ability to capture seasonality and other dynamics automatically from the raw transaction his-
tories sets the Base LSTM model clearly apart from the probability benchmark models as well as the GPPM. To get an even
better sense of the model’s flexibility and to study what is required to arrive at such forecasts, we next conduct a sensitivity
analysis using calibration periods of varying length.

Marketing managers oftentimes need to assess a cohort soon after it has been acquired, i.e., when still relatively little his-
toric data is recorded. With a limited amount of information available for model training, this might pose a challenge for a
data-driven approach like ours, which does not benefit from prior knowledge like the BTYD models with their built-in para-
metric assumptions. The Charity Contributions data is already a challenging scenario due to the low levels of activity, and in
Fig. 5 we show how the Base LSTMmodel forecasts changes as we decrease the length of the calibration period, first to 3 years
(top plot), 2 years, 1 year, and finally to just 6 months (bottom plot). As an alternative look at each of the data scenarios, we
also plot the cumulative transactions as a function of time in the right-hand plots. The holdout prediction length is increased
accordingly to take advantage of the entire data available for comparison.

The results summary we present in Table 9 show that irrespective of the calibration length, the Base LSTM model esti-
mates transaction counts for each individual accurately in terms of the RMSE, while keeping the aggregate bias very low.
Only when the calibration spans a single year in the third plot in Fig. 5 does the Base LSTM lose some of its power to model
Fig. 5. Charity Contributions: calibration length sensitivity.
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Table 9
Charity Contributions: varying the calibration and holdout period length.
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the seasonal pattern. Indeed, in this case only a portion of the customers included in the calibration sample has transaction
histories that span the entire year (this is a cohort acquired during the first half of that first year), and consequently the
model is not able to observe post-New Year behavior of many individuals who have not become active until later during
the first six months, and so the reoccurring yearly activity spikes after the New Year are not captured very well. When
the calibration period spans only 6 months (bottom plot in Fig. 5) the aggregate LSTM prediction becomes similar to those
of the BTYD models. Here, the overall excellent performance of the Base LSTM model is perhaps most surprising, as there is
little evidence of customers becoming inactive in the initial 6 months. In fact, the opposite is true – more individuals are
becoming active as the cohort is still growing, and this is where the prior knowledge available to the probability models
should help. Indeed, in the six-month calibration scenario the Base LSTM model over-forecasts the inactive group more than
twice as much as compared to the Pareto/NBD, but is able to compensate for this error by forecasting the remaining cus-
tomer groups more accurately, and with much lower bias.

4.4. Customer groups and segments

Companies are usually particularly keen on correctly forecasting the future most active customer groups and those who
become inactive (and thus might be subject to reactivation campaigns). To further investigate how well our proposed model
does beyond the previously discussed ‘‘opportunity” and ‘‘at risk” customer groups and to get a finer granular insight into
this, we classify the customer base into several subgroups with decreasing holdout period activity. This way we arrive at
the Top 1, 5, 25 and 50 percent customer groups. Likewise, we do the same for the less active Low 50 percent group as well
as the inactive customers with zero holdout transactions. We showcase the Charity Contributions dataset again, which is
characterized by a high degree of dataset-level inter-event timing regularity. Fig. 6 reflects this observation for the various
subgroups. The most active group (Top 1%) follows a highly regular monthly donation pattern and the Base LSTMmodel cap-
tures this behavior to a large extent, which is reflected by a 10% RMSE improvement, 11 percentage points of aggregate bias
reduction, and a MAPE improved by 24 percentage points, compared to the Pareto/NBD model. These loyal customers
deserve special attention and their characteristics can serve as a prime example of the type of audience marketers like to
target when crafting an acquisition strategy.

Within the groups of less active individuals, yearly seasonality with emphasis on the holiday period dominates the group
behavior. The bottom left chart in Fig. 6 shows that the LSTM model correctly estimates a large portion of the spike(s) coin-
ciding with the holidays for the ‘‘occasional” donors (Low 50%) – individuals often at the searchlights of marketers, as they
have the potential to become more valuable with the right intervention. In the bottom right plot we see the transactions
incorrectly attributed to the large (81.3%) group of inactive donors, and the LSTM reduces this share by 20 pp compared
to the Pareto/NBD. In the Appendix Section F, Table 13 we provide details on these segment-level observations for all ana-
lyzed datasets.

4.5. The influence of covariates

When individual characteristics or other contextual descriptive covariates are known or made available, we can account
for these by fitting an Extended LSTM model. This usually improves (i.e., lowers) the best cross-entropy loss (see Equation 3)
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Fig. 6. Segment-level prediction details: Charity Contributions.
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achieved during model training, which, in turn, translates into improved out of sample predictive performance. We provide
more details about this process in the Appendix Section C.

Take as an example for such covariates the household customers of the Electronics Retailer. They are characterized by
some basic demographic background information which we can use as additional inputs for our Extended LSTM model dur-
ing model training: The age and gender of the ‘‘head of household”, an indicator of the presence of children, and the house-
hold income group.26

Such customer covariates can help the Extended LSTM improve the predictive accuracy and further refine the forecast
with respect to the various segments of the customer base. In Fig. 7, we show this effect for the above-mentioned Electronics
Retailer customer groups, and plot the evolving cumulative holdout period transactions separately for households with and
without children, broken down by age group or the gender of the ‘‘head of household”, or by household income group. The
full shaded areas depict the actual transaction counts, the magenta lines show predicted values. In the left column is the
baseline prediction of the Pareto/NBD model which does not account for the additional covariates. Neither does the forecast
derived by the Base LSTM model in the middle column, but it is already very accurate in its ability to identify heterogeneous
customer groups. The most important signals are already contained in the basic transaction log. Making the customer covari-
ates available to the Extended LSTMmodel in the right column brings further polish to the model’s ability to accurately attri-
bute evolving transaction counts to the right customers, which enables marketing planners to fine-tune their marketing
26 Instead of selecting or otherwise preparing the covariates, we simply provide them all to the Extended LSTM model as variable inputs and the model is left
to decide which of them are useful to consider, and which are not. This is another notion of the process we earlier denoted as the model’s automatic feature
extraction capability. Note that the variables can be categorical or continuous; in the latter case we would re-scale the values into a range between 0 and 1 to
prevent large values entering parameter estimation.
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Fig. 7. Cumulative transactions with Electronics Retailer: Pareto/NBD, Base LSTM, Extended LSTM model.

Table 10
Performance lift of Extended LSTM models using customer covariates in prominent segments, reported in percentages (%).

Valendin et al. International Journal of Research in Marketing 39 (2022) 988–1018
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programs. The performance lift of the Extended LSTMmodel compared to the Base LSTM broken down by transaction activity
group for the two examined scenarios where customer covariates are available to us is reported in Table 10. In Appendix
Section E we demonstrate further how marketing managers can benefit from ‘‘what-if” scenario simulations for user-
defined holdout covariate schedules, such as customized direct marketing campaigns.

5. Discussion

We demonstrate how firms operating in non-contractual business settings can benefit from the automatic feature extrac-
tion capabilities of deep learning models for predictive customer base analysis. Our proposed model informs managers on
both short- and long-term forecasts of individual customer behavior and helps to timely uncover business opportunities
as well as potential customer defection. As we have shown, it also accurately predicts periods of elevated transaction activity
and captures other forms of purchase dynamics that can be leveraged in simulations of future sequences of customer trans-
actions. We highlight our model’s flexibility and performance on two groups of valuable customers: those who keep making
more and more transactions with the firm (denoted as ”opportunity” customers) and those who are at risk of defection. We
demonstrate that the model also excels at automatically capturing seasonal trends in customer activity, such as the shopping
period leading up to the December holidays. In Appendix Section F we provide a further characterization of scenarios where
our model performs particularly well and where it does not do so relative to the used benchmark methods.

The model brings many practical benefits for the marketing analyst, such as the lack of need for manual encoding of any
features in the customer data, a simple optimization objective, and quick estimation on modern computer hardware. We
show that incorporating contextual information in the model is straightforward and brings an additional boost in predictive
accuracy. However, the model performance is already extremely strong when no context is available beyond the timing of
the customer’s transactions. This is welcome news for firms that do not wish to collect personal information on principle, to
avoid the questionable ethics of harvesting the ‘‘behavioral surplus” (Zuboff, 2019): our work shows that this is feasible
without a big loss of accuracy. We gather evidence from eight diverse real-life settings to demonstrate the model robustness
as a flexible, general purpose prediction tool for customer base analysis.

The proposed approach is agnostic about time-varying or time-invariant covariates: Instead of adapting the data to a
model, our model adapts to the data and can simply be left to leverage useful signals automatically without the need to
change the model architecture or training procedure. While the incorporation of covariates is in principle possible with
so-called ‘‘scoring” or regression-like models and, to a certain extent, with advanced probability models as well, our
approach comes with another advantage. Regression-type models and traditional ML methods are often criticized for their
backward-looking properties and inefficient use of the available data (because they need to hold out the most recent period
of transaction histories to construct the dependent variable; cf. Fader & Hardie (2009)). This limitation implies the inability
to make projections into the distant future, but despite the ‘‘one time step ahead” property of its predictions we show, by
means of a calibration length sensitivity study, that the proposed approach can leverage the complete transaction histories
and deliver excellent long-term forecasts for individual customers. Such a perspective seems to be particularly useful for the
rich stream of information accompanying customer-firm interactions in modern digital business environments (Wedel &
Kannan, 2016; Dzyabura & Peres, 2021) where anything including high-dimensional data can become available as a
covariate.

The challenge for deep learning models of customer behavior remains their opaque nature and the lack of simple ways to
interpret their behavior, which is especially true for the complex temporal dynamics of RNNs. Other frequently contended
disadvantages are disappearing: Computational power is more affordable and efficient training methods are advancing at a
fast pace, which also facilitates the adaptive fine-tuning of model parameters once ”new” transaction data accrues, and data-
sets of historical customer transaction records are more commonly available, larger, and more detailed with observed behav-
ior across diverse contexts and platforms. Furthermore, the skills required to build such models are becoming widespread,
thanks to the mature open source programming tools and burgeoning research community. Deep neural networks continue
to inspire creative new applications, engineering and theoretical advancements, and with more marketing practitioners
interested, this trend will continue in the future.

Appendix A. Long Short-Term Memory (LSTM)

In this Appendix, we provide a short explanation of the idea of the Long Short-Term Memory (LSTM) and how it can be
utilized for customer base analysis. The specific properties of LSTM cells, which we leverage for forecasting customer activ-
ities, have been introduced by Hochreiter and Schmidhuberter (1997) and then further complemented by Gers,
Schmidhuber, and Cummins (2000) to address a limitation frequently encountered by RNNs. The activation functions of
RNN feedback connections are designed to capture inter-temporal relationships, but they merely establish ‘‘short-term”
memory. Once the lag between significant input events becomes too big, the influence of earlier signals can get lost to noise
and RNNs become ‘‘myopic”. This problem of vanishing gradients (Gers et al., 2000) makes it difficult for RNNs to learn long-
term dependencies and aggravates with longer training sequences, because of the extended chaining of mathematical oper-
ations used to calculate the error gradient. This instability makes ‘‘vanilla” RNNs inappropriate in the context of customer
bases analysis, where the task is to train and predict long sequences of transaction histories. These limitations of RNNs
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Fig. 8. The LSTM module.
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can be overcome by the LSTM cell. The LSTM is characterized by a set of built-in trainable internal neural networks called
‘‘gates” that can selectively update an internal cell state with parts of the input signal, while automatically discarding unin-
formative signals. These cells are usually organized in layers which effectively serve as the network’s long-term memory. A
single LSTM cell consists of four connected ‘‘gates”.

In the context of customer base analysis, the LSTMmodule serves to automatically compress the previously observed his-
tory of a customer’s actions into its internal cell state. The configuration of cell states is the functional equivalent of the latent
behavioral characteristics captured by a probability model. While the latter makes inferences about these latent character-
istics given an individual’s summary statistics of observed past behavior (i.e., RFM metrics), LSTM-based networks find a
suitable representation of observed history through a stochastic optimization process, learning how to continuously update
the cell states and retain useful information in order to maximize the model’s predictive performance measured by an
entropy loss function.27 This cell state update makes the LSTM conceptually similar to hidden Markov models (Baum &
Petrie, 1966), but with higher-order Markov properties.

Fig. 8 illustrates the processing of two consecutive input vectors xt and xtþ1. In our context these vectors represent the
individual customer’s behavior during two consecutive discrete time periods. At each step t two vectors from the previous
time step, the cell state ct�1 and the previous output ht�1, enter to update the cell state and produce a new output. First, the
so-called forget gate determines which part to remove from the previous cell state vector (ct�1), depending on the previous
output (ht�1) and the current input (xt):
27 Not
forgett ¼ r Wforget ht�1; xt½ � þ bforget

� �
; ð6Þ
where Wforget are the forget layer weights and bforget the corresponding unit biases; r . . .ð Þ denotes a nonlinear sigmoid or
squashing function which transforms the argument into a value between 0 and 1. Next, the input gate determines what infor-
mation will be used to update the cell state with its own set of weights (Winput) and biases (binput). Then, an intermediary cell

state gcellt is derived by applying a hyperbolic tangent function. The hyperbolic tangent is another smooth non-linear squash-
ing function with output values between �1 and +1. Finally, the actual update of the cell state is achieved by combining the
previous cell state with the filter of the forget layer and adding the intermediary cell state scaled by the input layer:
inputt ¼ r Winput ht�1; xt½ � þ binput
� �

; ð7:1Þ
gcellt ¼ tanh Wcell ht�1; xt½ � þ bcellð Þ; ð7:2Þ
cellt ¼ forgett � cellt�1 þ inputt � gcellt : ð7:3Þ
e that other loss functions can be useful, in particular when the outputs of the network are not categorical.
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The output gate is responsible for determining how much of the current input and the just updated cell state will be
allowed to flow to the current output (ht) and thus be conserved for future updating cycles. This is achieved by combining
the analog operation on the input vector (outputt) as in the previous gates with the hyperbolic tangent transformation of the
newly derived cell state cellt:
28 Stac
scenario
RW (n =
networ
single-l
layer ne
(7.0 ± 5
comple
outputt ¼ r Woutput ht�1; xt½ � þ boutput
� � ð8:1Þ

ht ¼ outputt � tanh celltð Þ ð8:2Þ
Appendix B. Technical Implementation Notes

Here we provide more details about the technical aspects of the model and share our experience with training. We imple-
ment the model in Python using the open source neural network tools Keras (Chollet, 2015) and Tensorflow (Abadi et al.,
2015) and we use a standard desktop computer with an NVidia GeForce 2080 consumer graphics card for training. This hard-
ware setup allows for multiple (typically 4–8, depending on model and data size) LSTM models to train in parallel, so lesser
hardware is fine to use. We tried replacing the LSTMmemory layer with different and more advanced RNN architectures, but
the ‘‘vanilla” LSTM speeds up training by a factor of 10 due to its efficient GPU-acceleration, which is an advantage that out-
weights any other potential incremental benefits. If less granular forecasts are sufficient, an additional training speed-up can
be achieved by aggregating the input samples into monthly rather than weekly buckets. As illustrated for the Charity Con-
tributions case (see the second entry in Table 4) this does not result in a significant loss of accuracy. We observe the same
findings for different sub-groups of customers and variations in holdout periods.
B.1. Network topology and hyperparameters

To find a best-performing neural network topology and set hyperparameters for model training, we implement a random
walk (RW) algorithm (see, e.g., Matuszyk, Castillo, Kottke, & Spiliopoulou (2016)), beginning with a small model i.e., one
LSTM layer stacked on top of a fully-connected layer, both layers with 64 units each.28 We then let the RW explore similar
configurations progressively towards larger, deeper architectures, varying each new configuration by randomly changing the
number and size of LSTM layers and fully-connected layers, adjusting the learning rate and batch size, or choosing from a
set of different optimization and regularization methods. This simple RW quickly discovers model architectures that are fast
to train (i.e. 10 min for small data sets like Groceries) and produce accurate results, however the different models can
exhibit different biases, which is why we recommend forming an ensemble using a set of best performing models with varying
hyperparameter profiles, as well as generating multiple independent predictions with each individual model, to further reduce
noise.

B.2. Network training

When training neural networks, the norm is to monitor the validation loss – a measure of the error the model makes on
an unseen part of the data – to asses the progress of model training. The idea is that good performance on unseen data is
evidence of the model’s ‘‘general” ability to perform a given task, and by ending the training process at the point when
the validation loss stops improving, we prevent the model from overfitting the training data. There is a downside though:
when we take out a (randomly sampled) portion of the calibration data to form this validation set, we end up with less data
to learn from overall (typically around 10% of the data is used for validation). This trade-off makes sense in scenarios where
we do not know which data will be used as model input in the future. This is not our case though: we make predictions for a
specific cohort of customers. This means our training procedure is as follows: we train the model as is common using a val-
idation set first, and once the validation loss stops improving for a number of epochs, we restore the model state to the point
with lowest validation loss and perform several ‘‘fine-tuning” training epochs using the entire calibration data set including
the samples previously left out as validation, using a large batch size and a reduced learning rate. The idea is to fine-tune the
model to the specific cohort, even if this technically means a small degree of ‘‘overfitting”. Note that at no point is any of the
holdout period data used during the fine-tuning stage. This way, we also assure a like-for-like comparison of the LSTM with
probability models, which also use the entire calibration set for model estimation but do not require a separate validation
set.
king multiple LSTM layers may be necessary in order to achieve best predictive performance – we study this empirically in the Charity Contributions
, recording the performance of various models with one, two, and three stacked LSTM layers, in a range of hyperparameter settings generated by the
300). We find that the second LSTM layer brings an average improvement of 2% in terms of the individual level RMSE: 0.854 ± 0.024 for the one-layer

ks, 0.840 ± 0.015 for networks with two LSTM layers. Adding a third stacked LSTM layer resulted in an RMSE of 0.845 ± 0.022, which is better than a
ayer LSTM, but worse than the two layer average. A similar effect is observed when measuring the aggregate bias: On average, 8.7%±7.2% for the single-
twork, 4.4%±2.7% for the two-layer setup (a 4.3 pp improvement), and again adding the third stacked LSTM layer does not lead to further improvement
.0%, which is still better than the single layer result). This illustrates that there is indeed an optimal network capacity, depending on the amount and
xity of training data – with a larger set of training examples, the optimal capacity would grow larger.
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Fig. 9. Evolution of error measures across increasing number of simulations (Charity Contributions dataset).
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B.3. Holdout simulation and prediction robustness

As described in Section 2.1, in prediction mode we generate a set of independent simulations for each customer and take
the mean expected number of transactions in a given time step as our final result. Fig. 9 shows the prediction error measures
(y-axis) evolving with increasing number of averaged simulations (x-axis). The grey bars depict the respective errors of each
single simulation, while the average error values across evolving simulation runs are given in black. The magenta line shows
the final result after averaging across all simulations. All error metrics converge to a terminal value after a relatively low
number of simulations.29 An additional accuracy improvement is obtained by using an ensemble of multiple LSTM models
trained with different model hyperparameters and taking the mean result across predictions generated by the individual
models.

Appendix C. The Extended LSTM model

In this section of the Appendix, we comment further on the topic of extending the LSTM with additional customer covari-
ates. Accounting for clearly exogenous covariates, such as customer background characteristics or scheduled marketing cam-
paigns (e.g., quarterly catalogue mailings, periodical reminders, etc.) is straightforward. The situation can become more
difficult with marketing interventions that might be subject to some individual-level targeting rules. However, as we discuss
in Section 2.3, for a modelling setup like ours where prediction accuracy is the primary goal, correcting for potential endo-
geneity does not seem to be critical. Furthermore, it is common business practice in larger firms that financial planning and
analysis (FP&A) divisions elaborate future marketing activity and spend on forecasts which can be used by the model to con-
dition upon. This is what we did in the Charity Contributions setting, where individual direct mailing intervention records
are available, and by conditioning the model on the actual holdout interventions we observe our most accurate forecast in
terms of individual-level RMSE – see the Charity Contributions with actual marketing appeals entry in Table 4.

The relationship between forecasting performance and numerical optimization objectives can be illustrated by plotting
the best validation loss value achievable during training against the individual-level RMSE score in the left-hand plot of
Fig. 10, where each dot represents a model created with varying neural network topology, optimization strategy and other
hyperparameter settings. The Base LSTM models, trained without any covariates, are plotted in black color and are clustered
in the center. The Extended LSTM models, which leverage the individual-level direct marketing interventions, are depicted
with red dots, showing that this additional information tends to help the models achieve better (lower) validation loss value,
which in turn tends to improve individual out-of-sample prediction accuracy as indicated by the RMSE scores.30 The valida-
tion loss itself is subject to the influence of all the various model training hyperparameters, and to highlight the most important
of these factors we use a Boosted Random Forest (Friedman, 2001) to regress model hyperparameters to the final validation loss
value in the right hand plot in Fig. 10.

As an alternative look at the Extended LSTM model, the two left-hand column plots in Fig. 11 show the average actual
holdout-period transactions along with the conditional expected counts predicted by the Base and the Extended LSTM, bro-
ken down by the calibration-period number of repeat transactions. We note that in both reported scenarios, Charity Contri-
butions and Electronics Retailer, the prediction of the Base LSTMmodel already follows the actual transaction counts closely.
To allow for a better inspection of differences, the right-hand plots display the MAE between the estimated and actual con-
ditional counts from the left-hand charts. There are a couple of subtle differences between the predictions derived by the
Base LSTM and the Extended LSTM models: In both scenarios we note an improvement in the most frequently purchasing
customer group, in the Electronics Retailer case the Extended LSTM leverages household demographic information and is
able to largely correct for the over-forecasting bias of the Base LSTM model in the group of zero-repeaters. Both of these cus-
tomer segments are important to managers: The former because it contains some of the firm’s most valuable customers, the
latter because it is the largest group.
29 We find in our empirical study that using around 30 independent simulations renders a good balance between computational cost and the incremental
improvement in accuracy, but one can simulate as many scenarios as needed.
30 In the Charity Contributions scenario depicted in Fig. 10, the validation loss and RMSE are positively correlated with a Pearson’s coefficient of 0.56.
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Fig. 10. Charity Contributions: influence of covariates on best validation loss, relative importance of model hyperparameters on final validation loss.

Fig. 11. Conditional expectations for Base LSTM model and Extended LSTM model with covariates.
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Appendix D. Simulation Study Of Pareto/NBD-Generated Data Scenarios

Deep neural networks are famous for their ability to discover even very subtle patterns in noisy data. This is, we believe,
one of the reasons for the excellent performance of our model since the real-life scenarios we examine are presumably full of
such subtle ‘‘hints”, which however largely remain hidden from the other benchmark models. To demonstrate how our pro-
posed approach performs in the complementary scenario when there is an underlying source model that generates the trans-
Table 11
Base LSTM on synthetic Pareto/NBD transactions: dataset characteristics and prediction accuracy.

Fig. 12. Charity Contributions: what-if scenarios with custom marketing intervention schedules.
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Table 12
Relative predictive performance lift between LSTM and benchmark models.

Note: RMSE lift is reported in percent (%), bias and MAPE in percentage points (pp).
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action data, we conducted an experimental simulation study involving a two-by-two comparison of the Base LSTM model
with the Pareto/NBD as baseline in transaction settings generated according to Pareto/NBD assumptions.31 The four settings
differ by high/low values of frequency and churn, each containing 5,000 customers with two years (104 weeks) of calibration,
and a holdout forecasting period of one year (52 weeks). We present the remaining descriptive statistics as well as the results in
Table 11, showing that even in this simulated setting the Base LSTMmodel is a strong competitor for the Pareto/NBD in all three
metrics.

Appendix E. ‘‘What-If Charity Contributions: Conditioning the Extended LSTM Model Prediction With Custom
Marketing Schedules

In this Appendix section, we explore how firms can use the Extended LSTM model to generate alternative ‘‘what-if” pre-
diction scenarios. To this end, we estimate an Extended LSTM model by providing extra contextual information as additional
model input(s) during training. In the case of the Charity Contributions, we use records of direct marketing appeals sent out
by the charity as time-varying individual-level covariates. In our main empirical study, we condition the Extended LSTM
model with the actual marketing intervention schedule to create our most accurate forecast. However, as we mention in Sec-
tion 2.3, there is another option available: The manager can determine custom schedules for the contextual information (e.g.,
a direct marketing campaign) and observe the effect on the predictions for the target variable.

As depicted in Fig. 12 we create three alternative scenarios by manipulating the holdout marketing intervention sched-
ules. In the top figure (a) is the actual scenario as tailored by the charity manager, with a varying aggregate volume of mar-
keting interventions throughout the calibration period that subsides somewhat in the holdout period (dotted blue line). In
this case the Extended LSTM model predicts an aggregate total of 6108 transactions over the holdout period, only 0.8% more
than the actual total of 6060 transactions. The middle figure (b) What-If Scenario A includes a custom intervention schedule
during the holdout period in which every individual is contacted by the firm at the beginning of each month, as visualised by
the regular blue dotted line spikes. This leads to an increased transaction activity and a predicted total of 9990 transactions, a
+63% increase. Conversely, the bottom figure (c) depicts an extreme scenario in which we stop the direct marketing appeals
31 We use the pnbd.GenerateData function from the BTYDplus package (Platzer, 2016) to prepare synthetic data.
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Table 13
Relative performance lift for segments by holdout transaction activity – LSTM against Pareto/NBD. Note: RMSE lift is reported in percent (%), bias and MAPE in
percentage points (pp).

Valendin et al. International Journal of Research in Marketing 39 (2022) 988–1018

1015



Fig. 13. Influence of selected dataset features on base LSTM model performance lift vs Pareto/NBD.

Valendin et al. International Journal of Research in Marketing 39 (2022) 988–1018
altogether during holdout. The Extended LSTMmodel predicts this would result in just 766 transactions being made over the
year, a 87% reduction of total volume.

While all these above described scenarios are hypothetical and assume stationary marketing activity effects in both the
calibration and forecasting periods, only carefully executed business experiments involving randomized controlled trials
could ultimately clarify the credibility of such what-if forecasts. However, they can serve managers as a baseline for bench-
marking the impact of certain changes in target marketing actions.
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Generally speaking, when using future realizations of covariates as inputs for our simulation model, we need to treat
them differently depending on which categories they fall into along the following differentiation: (i) Covariates under the
control of the manager (e.g., marketing interventions) can be added according to the strategy/method used to schedule them,
while covariates not under the control of the manager need to be generated by a separate model. (ii) Covariates influenced by
the customers’ future actions (e.g., targeted marketing actions) need to be simulated step-by-step based on the rules or sim-
ulation procedure they obey (for example, by linking back to a policy function), while covariates not influenced by the cus-
tomers’ future actions (e.g., non-targeted marketing campaigns) can be simulated in their entirety before running our model.
(iii) Covariates with outcome ranges that can potentially increase in the future form a special category. Because it is strictly
forward-looking, our LSTM model can only learn from signals that are observed at some point during calibration, which is a
limitation not present in BTYD models. However, if we anticipate new signal types in the future, we can reserve ”place-
holder” variable inputs in the model (e.g., a pandemic indicator variable) which correspond to unknown future events or
”shocks”. The model will learn that the probability of these placeholder outcomes is zero, and part of its capacity will remain
unused, but later we can fine-tune this model using an augmented dataset which includes events of the placeholder kind, to
save the computational effort required for a full re-training of the model.

Appendix F. Performance of the LSTM Model and limitations of use

In this Appendix section, we further examine the strengths and weaknesses of out-of-sample predictive performance.
Table 12 shows the performance lift relative to all three benchmark models together with a set of descriptive tags for each
of the examined real-life transaction data settings. These colored tags represent a simple indication of the overall regularity,

randomness, or irregularity of transactions ( tag), the cohort size ( tag), the churn rate ( tag), the length

of the calibration period ( tag), the mean transaction frequency ( tag), the ‘‘clumpiness” ( tag), and the

prominence of seasonal patterns ( tag). Table 13 reports the performance lift between the LSTM models compared

to the Pareto/NBD, broken down by customer transaction activity subgroup, and we note that while the Base LSTM often
performs better in forecasting the most active groups of individuals, in a number of cases it is the improved prediction of
less active and churned individuals that accounts for most of the performance lift.

For simplicity, we only tag cases where the given feature deviates significantly from the average. This allows us to make a
broad recommendation in terms of when not to use the LSTM model: The improvement in RMSE is not significant in data
settings that combine low-frequency with low proportions of ‘‘clumpy” customers, such as Blood Donations and Sunscreen.
Even then however, the Base LSTM remains strong on the aggregate level in terms of the aggregate bias and MAPE, and our
expectation is that with more available data (Blood Donations contain 11,887 customers, Sunscreen 7,794), the performance
gap between the LSTM and the benchmark models would only grow wider. To illustrate the relationship between data char-
acteristics and the Base LSTMmodel performance further, we regress the selected dataset features on the performance uplift
in Fig. 13, showing that conversely, the biggest improvements in individual-level RMSE are observed in scenarios with higher
calibration transaction frequency, in cases where longer calibration periods can be observed and also in scenarios where
more customers are ‘‘clumpy”. Understandably, the aggregate MAPE improves most wherever Seasonality is high.

Appendix G. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ijresmar.
2022.02.007.
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