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Accurate predictions of a customer’s activity status and future purchase propensities are crucial for managing
customer relationships. This article extends the recency–frequency paradigm of customer-base analysis by

integrating regularity in interpurchase timing in a modeling framework. By definition, regularity implies less
variation in timing patterns and thus better predictability. Whereas most stochastic customer behavior models
assume a Poisson process of “random” purchase occurrence, allowing for regularity in the purchase timings is
beneficial in noncontractual settings because it improves inferences about customers’ latent activity status. This
especially applies to those valuable customers who were previously very frequently active but have recently
exhibited a longer purchase hiatus. A newly developed generalization of the well-known Pareto/NBD model
accounts for varying degrees of regularity across customers by replacing the NBD component with a mixture of
gamma distributions (labeled Pareto/GGG). The authors demonstrate the impact of incorporating regularity on
forecasting accuracy using an extensive simulation study and a range of empirical applications. Even for mildly
regular timing patterns, it is possible to improve customer-level predictions; the stronger the regularity, the greater
the gain. Furthermore, the cost in terms of data requirements is marginal because only one additional summary
statistic, in addition to recency and frequency, is needed that captures historical transaction timing.

Data, as supplemental material, are available at http://dx.doi.org/10.1287/mksc.2015.0963.
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1. Introduction
The song “Time” by world-famous rock band Pink
Floyd is about how a lifetime can rush by and that
many people do not realize this until it is too late.
This anecdotal evidence by Pink Floyd’s songwriter
Roger Waters also mirrors some facets of enduring, but
noncontractual, customer–firm relationships. In such
settings, managers are often left with an uncomfortable
degree of ambiguity concerning how to react to the
moments that are ticking away with customers who
were previously active but have recently grown “silent”
in interacting with the focal firm. This paper proposes
to consider past timing patterns when interpreting a
customer’s most recent activity hiatus. By introducing a
new probabilistic model for customer-base analysis, the
Pareto/GGG, we will show that regularity in interevent
timings helps to better predict customer activity.

In recent years, customer-base analysis has become
increasingly popular among marketing analysts and
data scientists (Winer 2001, Fader and Hardie 2009).
Triggered by the availability of vast amounts of
customer-level transaction data, combined with the
facilitated access to and greater usability of sophis-
ticated models, this popularity is also paralleled by
the growing managerial interest in residual customer

lifetime value (CLV) and its subcomponents as key
metrics for managing customer-centric organizations
(Shah et al. 2006, Tirenni et al. 2007, Kumar et al. 2008,
Kumar 2008, Fader 2013). One of the main challenges
in such analyses is accurately predicting future pur-
chase behavior when customer–firm relationships are
of a noncontractual nature (Reinartz and Kumar 2000,
Gupta et al. 2006). First, in such a setting, a customer’s
current status at time T is not directly observable by
the organization, but must be inferred indirectly from
past activity. Second, the available historical purchase
data is right censored at time T , such that the full
lifetime of a customer cohort has yet to be observed.
Third, the amount of customer-level data tends to vary
significantly. In general, despite the richness of the data
in the aggregate, only a few transactions are observed
for most customers, and hence to extract the most
information from the available data, marketing analysts
need to adaptively pool information across customers.

Figure 1 illustrates the transaction records of two
hypothetical customers in a noncontractual setting; the
solid black dots indicate the first purchases, and the
circles represent repeat purchases. Both cases exhibit
identical values of the two widely used statistics to
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Figure 1 Same Recency, Same Frequency, yet Customer A Is More Likely to Be Alive than Customer B
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B

summarize observed transaction histories, namely, re-
cency (R, indicating the date of the last transaction; here,
t6 = 38) and frequency (F, or the total number of trans-
actions; here, x = 6). The key question for managers
is to determine which customer is more valuable to
the company at the current time T = 52 and thereafter.
Applying a purely recency-based heuristic, such as the
“hiatus heuristic” used by Wübben and von Wangen-
heim (2008), would leave managers undecided. The
same applies to simple RF-based customer scoring mod-
els (Malthouse 2001, Malthouse and Blattberg 2005),
which were originally imported from direct marketing
and remain popular among many practitioners for
valuing their customers. A series of increasingly sophis-
ticated probabilistic models link simple RF summary
statistics with a theoretically well-grounded behavioral
story of customers’ repurchase behavior and explicitly
integrate latent customer attrition into the modeling
framework (Fader and Hardie 2009). These so-called
“buy-till-you-die” (BTYD) models represent the well-
established standard approach used by data scientists
and analysts to predict crucial CLV components (such
as the expected number of future purchases) and have
been applied in a wide variety of industries (Wübben
and von Wangenheim 2008).1

In a standard BTYD model, however, customers A
and B would also be evaluated equally (same R and F),
which is a direct consequence of the model’s assump-
tions regarding the purchase process of active cus-
tomers. For example, the most widely recognized
benchmark BTYD model, the Pareto/NBD (Schmittlein
et al. 1987), assumes a Poisson purchase process and
an exponentially distributed lifetime. The two corre-
sponding customer-level parameters can vary across
customers, following independent gamma distributions.
Because the gamma-exponential mixture results in
a Pareto distribution, whereas the gamma-Poisson
mixture leads to a negative binomial distribution, the
model is referred to as Pareto/NBD. Among the many
variations and extensions of the Pareto/NBD model
(Fader and Hardie 2009), most retain a Poisson purchase

1 The popularity of BTYD models also has benefited greatly from
Excel-based implementations (Fader et al. 2005a) and the more
recent availability of open-source implementations in more sophisti-
cated programming environments, such as the R package BTYD
(Dziurzynski et al. 2014).

process, in which the time between two purchases is
exponentially distributed. This implies that the most
likely time for a repurchase is immediately after a
purchase (mode zero). Furthermore, because of the
memoryless property of the exponential distribution,
the time elapsed since the last purchase does not influ-
ence the timing of the next purchase (Chatfield and
Goodhardt 1973).

Because of these properties, NBD-based models inter-
pret the purchase hiatus at the end of the observation
period equally for both customers in Figure 1. However,
their observed intertransaction timing patterns tell a
different story: Customer B shows a regular repurchase
pattern, with narrowly distributed intertransaction
times (ITTs). The long waiting time since the last trans-
action thus differs from that customer’s individual
norm, suggesting that customer B may have actually
defected. By contrast, the recent purchase hiatus exhib-
ited by customer A is observed before (t3 − t2), and
hence it does not provide a similarly clear indication
of whether this person will be active in the future.
A model that adequately accounts for these differences
in timing patterns would thus assign a significantly
lower probability of future activities to the regular but
“overdue” customer relative to the customer purchasing
more irregularly. Therefore, these two customers also
deserve to be treated differently in terms of allocating
marketing resources and tailoring marketing campaigns
to them. Efforts need to be undertaken to win back
customer B, whereas customer A could be targeted
with up- and cross-selling opportunities, because the
next purchase event is anticipated to take place soon.

Recently, in a similar vein, but with opposite signs,
Zhang et al. (2015) introduced the concept of clumpiness
in the marketing literature and proposed extending the
R, F, monetary value (RFM)-based framework for CLV
predictions by including a metric-based approach that
captures variations in timing patterns across customers.
By definition, their proposed clumpiness metric C takes
its minimum value with equally spaced events; hence,
clumpiness can be understood as the opposite of reg-
ularity. Such non-Poisson-like, “clumpy” patterns of
rapidly occurring events separated by longer periods of
inactivity can occur, for example, in digital media con-
sumption and website visits (e.g., YouTube, Amazon,
eBay, Hulu), where many consumers tend to “binge.”
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Barabasi (2005) lists further examples of certain human
activities that exhibit such “bursts” of activity, followed
by longer periods of inactivity, and shows that such
patterns can arise as a consequence of a priority-driven
decision process. However, there is also evidence that
more regular timing patterns are prevalent in other
contexts (Chatfield and Goodhardt 1973, Gupta 1991,
Wu and Chen 2000, Bardhan et al. 2015), such as pur-
chases of packaged consumer goods that are frequently
consumed (e.g., food, beverages, detergents, toiletries).
The consumption patterns for these products are often
regular per se and thus trigger regular purchases. Fur-
thermore, if many acts of consumption are required to
initiate the need for repurchase (e.g., breakfast cereals,
ground coffee, toothpaste, toilet paper), then even if
consumption timing is random, purchase timing still
will appear regular. Intuitively, this regularity results
when variations in interconsumption times cancel one
another out when summed together.2

In this paper, we respond to the call by Zhang et al.
(2015) to develop a model-based approach that accom-
modates intertransaction timing patterns in predicting
future purchase activities. Our proposed model builds
on a probabilistic BTYD framework and leverages
information on timing patterns to make improved
inferences regarding customers’ activity status. We
develop a Pareto/NBD variant that replaces the NBD
repeat-buying component with a mixture of gamma
distributions (Pareto/GGG) to allow for a varying
degree of regularity across customers. We thereby
abandon the historical focus on the count process, but
fully emphasize accurately capturing the timing process.
Although the model captures a wide variety of timing
patterns, it does not induce any substantial additional
costs in terms of data requirements. Other than the
usual RF statistics, it requires only a single summary
statistic for the historical ITTs, which can be provided
easily while updating the RF variables.

Before we present the formal properties of the model
in §3, we review prior contributions that suggest relax-
ing the restrictive intertransaction timing assumptions
underlying conventional BTYD models and thereby
draw conclusions for developing our model variant.
We show that the proposed model generalizes the
Pareto/NBD by accommodating regular timing pat-
terns, but also nests cases of random (i.e., exponentially
distributed) and clumpy patterns. In §4, we explore the
improved predictive performance of the Pareto/GGG
using a like-for-like comparison with the Pareto/NBD
across a broad range of simulated parameter settings,
then investigate for which customer segments we
should expect the greatest improvement in holdout

2 Specifically, the sum of k independent exponential variables follows
an Erlang-k distribution, and its coefficient of variation decreases
with increasing k: CV = 1/

√
k.

predictions. Next, we empirically validate the forecast-
ing performance of our model using multiple data sets.
By accounting for regularity, our model outperforms
both the Pareto/NBD and the heuristic benchmark
suggested by Wübben and von Wangenheim (2008) in
terms of out-of-sample, individual-level forecasting
accuracy for future customer-level transactions. This is
already the case for relatively mild intertransaction
timing regularities, whereas the models perform on
par for data sets without regularities. When ITTs fea-
ture regularity, the greatest improvements accrue in
the important, high-frequency, low-recency customer
segment. In such a situation, a standard NBD-type
model results in overly optimistic predictions and
erroneous recommendations with respect to customer
prioritization. In §5, we contrast the properties of our
model-based approach with the clumpiness metric C
developed by Zhang et al. (2015) in greater detail.
Finally, we discuss the merits and limitations of the
proposed model for researchers and practitioners and
outline some suggestions for further research.

2. Random, Regular, and Clumpy
Interpurchase Timing

Since its introduction, the Pareto/NBD model has been
extended in various ways, mostly by modifying the
dropout process. A particularly noteworthy variation
resulted in the betageometric/NBD model (BG/NBD)
by Fader et al. (2005a), which adjusts the dropout
story by restricting defection to repurchase incidents.
The BG/NBD approach offers data-fitting capabilities
similar to those of the Pareto/NBD model, but it is
mathematically and computationally less demanding,
which has helped disseminate this model class in
real-world settings. In turn, Batislam et al. (2007) and
Hoppe and Wagner (2007) each modified this variant
by allowing for an additional dropout opportunity
immediately after the initial purchase (MBG/NBD and
CBG/NBD, respectively). In the model developed by
Jerath et al. (2011), periodic death opportunities serve to
decouple the discrete dropout opportunities from the
purchase process. Bemmaor and Glady (2012) reintro-
duces the assumption of a continuously distributed
dropout process, but allows for a nonconstant hazard
rate (gamma/Gompertz/NBD). Furthermore, other
Pareto/NBD variants have succeeded in incorporat-
ing time-invariant covariates (Fader and Hardie 2007,
Abe 2009). However, all of these models retain the
assumptions of a Poisson purchase process (i.e., NBD).
Considering that the dropout process is latent, whereas
the purchase process is directly observable and offers
more customer-level information, it seems appropri-
ate to focus on the purchase process and model a
more flexible distribution to adapt to a wider range of
real-world timing patterns. This adaptation appears par-
ticularly necessary against the backdrop of our research
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motivation, namely, to gain a better understanding
of the purchase process and thereby to also improve
inferences concerning the nonobservable activity status.

The idea of accounting for deviations from Poisson-
like purchasing in repeat-buying models is not new in
the marketing literature. Herniter (1971) was among the
first to propose modeling ITTs using the Erlang-k fam-
ily of distributions, which allows for various degrees
of regularity in timing patterns (i.e., higher k, stronger
regularity), but also contains the exponential distribu-
tion as a special case (k = 1). In addition, Chatfield
and Goodhardt (1973) combined the Erlang-k with a
gamma distribution to reflect the variation in the pur-
chase rate across customers and termed the resulting
model a condensed negative binomial distribution (CNBD).
Both contributions also offered empirical support for
regular purchase patterns of k= 2 for products such
as aluminum foil, detergents, razor blades, and soaps.
However, in their concluding remarks, Chatfield and
Goodhardt (1973, p. 834) worried that “the CNBD for-
mulas are so much more complex that it is doubtful if
the small improvements in fit that seem possible justify
the extra effort.” Furthermore, these authors focused on
stationary settings in a repeat-buying context, whereas
we attempt to leverage a better understanding of the
timing process to improve inferences concerning the
latent activity status. Further research on the character-
istics of the CNBD appear in the papers by Schmittlein
and Morrison (1983) and Morrison and Schmittlein
(1988). Gupta (1991) presents a framework capable of
incorporating time-dependent covariates for estimating
NBD as well as CNBD models; the empirical evidence
in that article also suggests regular purchase patterns
for the coffee category. Within this framework, Fader
et al. (2004) build a dynamic changepoint model, in
which changes in purchase frequency predict new
product sales along the product cycle. In addition,
Schweidel and Fader (2009) allow for a transition from
an exponentially distributed to a more regular Erlang-2
timing pattern over a customer’s life cycle. Finally,
Wu and Chen (2000) combine the CNBD model with
a nonstationary repeat-buying process and observe
strong regularities in the tea category, with an estimate
of k = 5.

It is possible to achieve greater flexibility for mod-
eling intertransaction timing regularity by moving
from Erlang-k to a gamma distribution, which con-
tains the former as a special case, although its shape
parameter is no longer restricted to integer values.
The shape parameter can be estimated at the customer
level by calculating the coefficient of variation (CV) or
maximum likelihood and is then aggregated across
customers (Herniter 1971, Dunn et al. 1983, Wu and
Chen 2000). However, this approach requires sufficient
transactions made by a customer (usually 10 or more)
and thus suffers in settings marked by low frequency.

Wheat and Morrison (1990) propose an alternative
estimation method that requires only two observed
ITTs (ãt11ãt2) per customer by assuming a common
shape parameter k across all customers. The estimate
for this shape parameter is given by

k̂wheat =
1 − 4 · var4M5

8 · var4M5
with M 2=

ãt1

ãt1 +ãt2
1 (1)

which serves as an easy-to-compute data-set-level
summary statistic and can be used as a quick diag-
nostic check for regularity within a customer base
before running a more complex modeling approach,
such as the Pareto/GGG presented in the next section.
In addition to the above work, Allenby et al. (1999)
present an even more flexible model that assumes that
the intertransaction timing patterns follow a general-
ized gamma distribution, which contains the gamma,
Weibull, lognormal, Erlang, and exponential distri-
butions as special cases, and hence it accommodates
a wide variety of timing patterns, including regular
purchases. However, both shape parameters remain
constant across customers in their model; thus, they
only allow for a homogeneous regularity parameter in
the customer base.

More recently, Zhang et al. (2013) introduce an en-
tire class of C measures to calculate the degree of
“clumpiness” at an individual level in time-discrete
settings. The design of these measures has been guided
by four requirements concerning their behavior. Among
others, they are expected to take their maxima when
events are tightly clustered and their minima in the case
of constant ITTs. Thus, they effectively capture the level
of nonrandomness in event timings and also measure
regularity, just with opposite signs. Nevertheless, as
we will show in §5, to become reliable, these metrics
also require a high number of observations at the
individual level and therefore need to be used with
care in low-frequency or high-churn scenarios. The
generalization of the Pareto/NBD presented in the
next section, the Pareto/GGG, is able to address both
situations well, because it adaptively pools available
information across customers and explicitly allows for
churn to take place.

Before introducing this approach, we depict the
range of timing patterns induced by assuming gamma-
distributed ITTs. Figure 2 displays the probability
density and multiple sampled timing patterns for three
different values of the shape parameter (k ∈ 800311189).
To facilitate direct comparisons across settings, we also
use k as a rate parameter, such that all result in the
same expected ITT of one time unit. Obviously, for
higher values of k, the density exhibits a narrower
shape, resulting in less variance in ITTs and thus more
regular patterns. For smaller values of k, we instead
detect tight clusters of transactions along the timeline.
As this brief illustration shows, the gamma distribution
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Figure 2 Distribution and Sampled Timing Patterns for Gamma4k1 k5

k > 1k = 1k < 1

RegularRandomClumpy

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

can capture regular (k > 1), random (k = 1), and clumpy
(k < 1) patterns; it generalizes the exponential and
Erlang-k family of distributions and thus represents a
good candidate for a flexible model of timing patterns
in noncontractual settings with continuous timing.

3. Model Development
Because the Pareto/NBD model remains the workhorse
among BTYD models operating in continuous time
(Wübben and von Wangenheim 2008), we selected it as
the base for developing a more general model that can
account for various timing patterns. Specifically, we
replace the exponential with a gamma distribution to
model a customer’s ITTs and let the shape parameter
of that gamma distribution vary across customers. In so
doing, we not only allow for heterogeneity in frequency
and dropout but also in terms of regularity. Note that
other NBD-based models could be generalized in a
similar way. Using a hierarchical Bayes setup, the model
adaptively pools (the commonly sparse) individual-
level information, and the degree of pooling is driven
by the data (Rossi and Allenby 2003). Thus, a prior
belief about a customer’s regularity gets updated in a
Bayesian manner, according to the available customer-
level information about variance in ITTs. The more
transactions that are available for a customer, the better
we can draw inferences on that customer’s regularity.

3.1. Model Assumptions

3.1.1. Transaction Process. While the customer re-
mains alive, her ITTs, ãtj 2= tj − tj−1, follow a gamma
distribution, with shape parameter k and rate parame-
ter k�:

ãtj ∼ Gamma4k1 k�50 (2)

The mean of the gamma distribution is shape/rate,
and the CV is 1/

√

shape. The chosen parameteriza-
tion therefore results in the same mean ITT as the
Pareto/NBD, 1/�, which allows for a direct compari-
son of the parameter estimates of � between the two
models. Here, � determines the frequency, and the
shape parameter k determines the regularity of the
transaction timings.

3.1.2. Dropout Process. A customer remains alive
for an exponentially distributed lifetime �

� ∼ Exponential4�50 (3)

3.1.3. Heterogeneity Across Customers. The in-
dividual-level parameters 8k1�1�9 follow gamma dis-
tributions across customers independently

k ∼ Gamma4t1�53 (4)

�∼ Gamma4r1�53 (5)

�∼ Gamma4s1�50 (6)

Considering these adapted assumptions for the trans-
action process, we call this new model variant as the
Pareto/GGG (gamma-gamma-gamma) model of repeat
purchase behavior.

3.2. Parameter Estimation
To achieve the parameter estimation for the Pareto/
GGG, we formulate a full hierarchical Bayesian model
with hyperpriors for the heterogeneity parameters,
then generate draws of the marginal posterior distri-
butions using a Markov Chain Monte Carlo (MCMC)
sampling scheme. This comes with additional computa-
tional costs and implementation complexity, compared
with the maximum likelihood method available for
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Pareto/NBD, but we simultaneously gain the benefits
of (1) estimated marginal posterior distributions rather
than point estimates, (2) individual-level parameter
estimates, and thus (3) straightforward simulations of
customer-level metrics that are of managerial interest.

Rossi and Allenby (2003) provided a blueprint for
applying a full Bayes approach (in contrast to an
empirical Bayes approach) to hierarchical models such
as Pareto/NBD. Then Ma and Liu (2007) published a
specific MCMC scheme, comprised of Gibbs sampling
with slice sampling to draw from the conditional
distributions. Later Abe (2009) provided a significantly
faster sampling scheme for the Pareto/NBD model
by using data augmentation (Tanner and Wong 1987),
thus expanding the parameter space with two latent
variables: unobserved lifetime � and activity status z.
This approach effectively decouples the sampling of
the transaction process from the dropout process and
therefore is able to take advantage of simple Bayesian
updating rules for the conjugate priors.3

However, for Pareto/GGG, the transaction process
priors are no longer conjugate priors, so we must
sample the conditional posteriors for the individual-
level transaction parameters k and � using MCMC
sampling for each Gibbs iteration and for each customer.
The continued increases in computational power make
even such brute-force simulation methods feasible and
enable greater flexibility in model assumptions, as
was also demonstrated by Abe’s (2009) Pareto/NBD
variant.

As we show subsequently, the Pareto/GGG requires
only one additional, easily maintained summary statistic
of historic transaction timings: the sum over the logarith-
mic ITTs.4 Therefore, the data requirements imposed
by modeling gamma-distributed ITTs are not, in prac-
tice, any higher than those for Pareto/NBD, which
requires (1) the number of past transactions x, (2) the
timing of the most recent transaction tx, and (3) the total
observation time T since the customer was acquired.
Computing these three statistics requires processing the
customer’s full transaction history or their continuous
updating whenever a new transaction is recorded. In
either case, adding the sum of the logarithmic ITTs as
an additional measure is straightforward to implement.

3.3. Key Expressions
Following, we present expressions for quantities of
interest to users of the Pareto/GGG model. In doing

3 Other studies using hierarchical Bayesian approaches using MCMC
sampling to estimate the Pareto/NBD model or variations thereof
include the contributions by Singh et al. (2009), Conoor (2010), or,
more recently, Quintana and Marshall (2015) in a noncontractual
setting, and the paper by Borle et al. (2008) in a contractual context.
4 Note that one of the four clumpiness measures introduced by
Zhang et al. (2013) relies on the same summary statistic, which
again shows that the same underlying concept is being captured,
just with opposite signs.

so, we use fâ to denote the density and Fâ to indicate
the cumulative distribution function of the gamma
distribution.

P4alive50 The probability that a customer is still alive
at time T is derived in Appendix A and results in the
following equation:

P4� > T � k1�1�1 t11 0 0 0 1 tx1T 5

=

(

1 +

∫ T

tx
41 − Fâ 4y− tx � k1k�55�e−�y dy

41 − Fâ 4T − tx � k1k�55e−�T

)−1

0 (7)

Individual-level likelihood. The likelihood of observing
x intertransaction times ãtj and then having no further
transaction occur until time T (or in case of churn, until
time � , i.e., ãtx+1 > min4T 1 �5− tx) can be expressed as
follows:

L4k1� � t11 0 0 0 1 tx1T 1 �5

=

( x
∏

j=1

fâ 4ãtj � k1k�5

)

41 − Fâ 4min4T 1 �5− tx � k1k�55

=
4k�5kx

â4k5x
e−k�tx

( x
∏

j=1

4ãtj5
k−1

)

· 41 − Fâ 4min4T 1 �5− tx � k1k�550 (8)

Conditional log-posterior for k0 It follows from Equa-
tions (8) and (4) that

log�4k � t11 0 0 0 1 tx1T 1 �1�1 t1�5

∝ log likelihood + log prior

∝ kx log4k�5− x log â4k5− k�tx + 4k− 15
x
∑

j=1

logãtj

+ log41 − Fâ 4min4T 1 �5− tx � k1k�55

+ 4t − 15 log k−�k0 (9)

Note that the conditional log-posterior for the regularity
parameter k requires the sum over the logarithmic ITTs
as an additional summary statistic.

Conditional log-posterior for �0 It follows from Equa-
tions (8) and (5) that

log�4� � t110001tx1T 1�1k1r1�5

∝ loglikelihood+logprior

∝kxlog4�5−k�tx+log41−Fâ 4min4T 1�5−tx �k1k�55

+4r−15log�−��0 (10)

Probability distribution of � in case of churn. For sam-
pling the lifetime of a customer who churns before T ,
we must consider the likelihood that no further trans-
actions occur in 4tx1 �7, such that the next ITT will be
greater than � − tx. The probability distribution of � − tx
thus can be specified up to a normalizing constant as
follows:

f 4� − tx � k1�1�5∝ e−�4�−tx541 − Fâ 4� − tx � k1k�550 (11)
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3.4. MCMC Procedure
The sampling scheme to generate draws from the joint
posterior distribution is a combination of Ma and Liu’s
(2007) Gibbs sampler with slice sampling (Neal 2003)
and Abe’s (2009) augmented parameter space.

1. Use separate gamma distributions as hyperpriors
for t, �, r , �, s, and �, and set the according shape and
rate hyperparameters 4t11 t25, 4�11�25, 4r11 r25, 4�11�25,
4s11 s25, and 4�11�25 to capture the prior belief on the
heterogeneity parameters.

2. Set initial values for t, �, r , �, s, and �, such as by
using maximum likelihood estimates of Pareto/NBD.

3. Set initial values for 8ki1�i1�i1zi1 �i9 for all
customers.

4. For each customer i,
(a) Draw ki by slice sampling the conditional

posterior in Equation (9);
(b) Draw �i by slice sampling the conditional

posterior in Equation (10);
(c) Draw �i ∼ Gamma4s+11�+�i5, with the recog-

nition that the gamma distribution is the conjugate
prior of the exponential distribution;

(d) Draw zi ∼ Bernoulli4P 4alive55 with P4alive5 cal-
culated according to Equation (7);

(e) Draw �i conditional on status zi:
(i) If the customer is alive (zi = 1), then draw

�i ∼ Exponential4�i5, left truncated to 6Ti1�5;
(ii) If the customer has already churned before

time Ti (zi = 0), then draw �i − txi by slice-sampling
the probability density in Equation (11), truncated to
601Ti − txi 5.

5. Draw the heterogeneity parameters, treating the
individual-level parameter draws as data and the
specified gamma hyperpriors as priors. Ma and Liu
(2007) propose updating the rate and shape heterogene-
ity parameters separately, whereas we suggest using
component-wise slice-sampling to draw them simulta-
neously, which reduces the strong auto-correlation of
the MCMC chain.

(a) Draw �4t1� � 8ki95.
(b) Draw �4r1� � 8�i95.
(c) Draw �4s1� � 8�i95.

6. Repeat Steps 4 and 5 until convergence is reached
and sufficient samples have been drawn.

4. Performance Evaluation and
Empirical Analysis

We benchmark the performance of the Pareto/GGG
against the Pareto/NBD using the following evaluation
strategy: First, we conduct an extensive simulation
study to systematically investigate the role of ITT regu-
larity in holdout-forecasting tasks across variations of
our model’s assumptions. Second, we assess the empiri-
cal performance of the model using six real-world data
sets on the purchasing of various product categories at

e-commerce websites, an online grocery retailer, and
the donation records of a nonprofit organization.

4.1. Simulation Study
Our simulation study sought a better understanding of
the benefits of incorporating regularity in a wide vari-
ety of purchase settings. For this purpose, we built on
the simulation design suggested by Fader et al. (2005a),
who use three levels for each of the four Pareto/NBD
heterogeneity parameters for creating synthetic cohorts.
To ensure a reasonable size for the total number of
simulated “worlds,” we chose only the two extreme
values for each parameter, but combined these 24 = 16
settings with five distributions of regularity and two
cohort sizes, resulting in a total full-factorial design of
16 × 5 × 2 = 160 Pareto/GGG scenarios. The chosen
parameter values are as follows: N ∈ 81,00014,0009,
r ∈ 80025100759, � ∈ 851159, s ∈ 80025100759, � ∈ 851159,
and 4t1�5∈ 84106100451 45120551 461451 481851 41712059.
The resulting distributions for the regularity parameter
k are displayed in Figure 3; they include a mix of
customers with clumpy, random, and regular trans-
action timing. Based on these assumptions, we then
generated transaction records for a calibration period
and a holdout period of 52 weeks each. Similar to the
simulation environment created by Fader et al. (2005a),
the spanned parameter space covers a wide range
of settings. The share of customers with no repeat
transactions during the calibration period (x = 0) ranges
from 22% to 91%; the share of frequent customers with
x ≥ 10 spans 0% to 22%; and the share of customers
who are active during the holdout period ranges from
4% to 58%.

For each scenario, we performed parameter estima-
tions using the MCMC sampler, with weakly informa-
tive hyperpriors. To ensure like-for-like comparisons
between the Pareto/GGG and Pareto/NBD, we also
performed parameter estimations for the latter using
MCMC sampling. An efficient implementation of the
Pareto/GGG and Pareto/NBD MCMC sampler is made
available as part of the BTYDplus R package (R Core
Team 2014, Eddelbuettel and François 2011) under an
open-source license.5 Further details on runtime and
convergence diagnostics are reported in Appendix B.

To illustrate parameter recovery, Table 1 shows the
results for five selected scenarios. Apparently, the
Pareto/GGG MCMC sampler can recover the under-
lying data-generating parameters quite well, and it
does so more effectively for the purchase process
(t1�1 r1�) than for the unobservable lifetime process
(s1�). A further analysis of all 160 scenarios confirms

5 The authors wish to express their gratitude to Sandeep Conoor, who
provided them with a working Fortran implementation of his MCMC
sampler for estimating the Pareto/NBD. The work by Conoor (2010)
proved to be very helpful for writing our own performance-tuned
MCMC sampler in R.
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Figure 3 Interquartile Ranges for Simulated Distributions of Regularity Parameter k
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that Pareto/NBD tends to overestimate lifetime and
ITTs in the presence of regularity. This error likely
results because the Pareto/NBD model interprets a
long transaction hiatus observed for a regular customer
rather as an exceptionally long ITT, because it allows
for greater variance in waiting times than would be
the case when taking regularity into account.

Next, we assess the impact of incorporating regular-
ity into the model by examining the lift in predictive
accuracy for all 160 simulated scenarios when we move
from Pareto/NBD to Pareto/GGG. Forecasting accu-
racy is compared in terms of the customer-level mean
absolute error (MAE) of the predicted number of trans-
actions during the holdout period;6 we define a relative
lift as 1 − MAEPGGG/MAEPNBD and an absolute lift as
MAEPNBD −MAEPGGG. Thus, the higher the lift measure,
the higher the (relative) gain in predictive accuracy.
In general, the Pareto/GGG performs well in these
forecasting tasks. In cases with predominantly random
or clumpy ITT patterns, the models generally perform
on par. However, for scenarios with mildly regular
timing patterns, the Pareto/GGG already consistently
improves forecasting accuracy across the board, with
larger improvements for greater degrees of regularity
(up to +20% relative lift). As expected, the stronger the
regularity within a cohort, the stronger the lift, and this
result holds across all other parameter configurations.
A complete summary of the results of the simulation
study for all 160 synthetic scenarios is included in
Appendix B.

To obtain a more thorough understanding of the
particular customer groups within a cohort for which
the largest gains in predictive accuracy can be achieved

6 The MAE measure is frequently used for time-series data. In the
context of customer-base analysis, see the recent contribution by
Schwartz et al. (2014) for a justification of choosing MAE as a model
selection criterion.

when accounting for regularity, we combined the fore-
casts for all 400,000 customers from the 160 simulated
worlds and then divided them into distinct segments
according to their recency, frequency, and (true under-
lying) regularity. In terms of frequency, we distinguish
groups of customers with four or more transactions
(high), one to three transactions (low), and no repeat
transactions (zero). For recency, the distinction indicates
whether a customer conducted the latest transaction
less than eight weeks ago, tx > 42 (high), or more than
eight weeks ago (low). Table 2 reports the relative
and absolute lift in MAE both for Pareto/NBD and
Pareto/GGG, along with the average number of trans-
actions during the holdout period for that segment. We
also rank our 400,000 synthetic customers according
to their regularity, divide them into 10 equally sized
groups, and plot their corresponding relative lift in
MAE against their mean regularity in Figure 4. Several
important findings emerge from inspecting Table 2 and
Figure 4:

• The stronger the regularity, the greater the lift in
the predictive accuracy of the Pareto/GGG compared
with the Pareto/NBD forecasts.

• For customers with random (k ≈ 1) or even clumpy
(k < 1) purchase patterns, the Pareto/GGG offers pre-
dictions that are generally on par with those of the
Pareto/NBD.

• The lift for customers purchasing at high frequen-
cies is greater than for customers with lower purchase
frequencies, likely because Pareto/GGG detects an indi-
vidual’s degree of regularity more easily when more
transactions are observed in the past. However, we find
a lift even for customers with few or zero repurchase
transactions. In such cases, the model leverages the
estimated heterogeneity of regularity to form a prior
belief about each person’s regularity.

• The lift for customers with a longer purchase
hiatus since the last observed purchase (i.e., the low
recency group) is greater than that for those who were
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Table 1 Recoverability of True Parameters for Five Selected Scenarios with N = 41000

tq50 �q50 rq50 �q50 sq50 �q50 kq10 kq50 kq90 IT Tq50 �q50 P (alive) (%)

True 106 004 0025 500 0025 500 0084 3021 8022 91 75 54
PGGG 109 005 0022 404 0031 1009 0094 3011 7048 129 83 57
PNBD 0018 403 0027 1408 205 183 67
True 500 205 0075 500 0075 500 0097 1087 3020 9 8 16
PGGG 408 204 0065 405 0083 607 0095 1084 3019 10 9 17
PNBD 0054 405 0079 706 12 11 20
True 600 400 0025 500 0025 1500 0079 1042 2032 82 224 69
PGGG 505 306 0023 404 0033 3105 0077 1043 2039 96 229 73
PNBD 0021 403 0035 5304 111 296 78
True 800 800 0025 500 0075 1500 0058 0096 1047 71 23 33
PGGG 703 704 0024 406 0072 1308 0055 0094 1047 71 22 32
PNBD 0030 407 0054 503 44 14 28
True 1700 2000 0075 1500 0075 1500 0060 0083 1012 21 23 33
PGGG 1404 1701 0072 1409 0080 1701 0058 0083 1015 22 24 33
PNBD 0094 1503 0065 804 17 15 27

Notes. PNBD, Pareto/NBD; PGGG, Pareto/GGG.

active recently. It seems (and we will subsequently
confirm this) that the presence of regularity particularly
facilitates distinguishing between active and inactive
customers, if their next transaction is overdue. While
this finding makes intuitive sense, traditional NBD-type
models fail to take advantage of it. If the timing patterns
are fairly erratic, this becomes relatively inconsequential.
However, in a world with increasingly regular purchase
timing, the Pareto/NBD no longer provides good
predictions and is clearly outperformed by the much
more flexible Pareto/GGG.

• The greatest lift emerges for the group of cus-
tomers who formerly purchased very frequently in the
past but have not been active more recently. Although

Table 2 Impact of Incorporating Regularity by Customer Segment

Customer segment Lift MAE
Holdout

Regularity Recency Frequency Relative (%) Absolute PGGG PNBD mean4x∗5

None k < 105 Zero Zero + 0 +0000 0016 0016 0009
Low Low +2 +0002 0087 0089 0081
Low High −0 −0000 2064 2064 3049
High Low +1 +0001 1069 1071 2024
High High +0 +0000 4083 4083 11049
All All +0 +0000 0087 0088 1035

Low 105 < k < 3 Zero Zero +11 +0002 0014 0016 0008
Low Low +9 +0008 0083 0091 0098
Low High +15 +0034 1097 2031 3001
High Low +1 +0002 1028 1030 2021
High High +1 +0006 3081 3087 11044
All All +6 +0005 0069 0074 1036

High k > 3 Zero Zero +16 +0002 0013 0015 0007
Low Low +18 +0016 0073 0089 1005
Low High +41 +0094 1033 2027 2031
High Low +4 +0004 0097 1001 2008
High High +7 +0025 3009 3033 11061
All All +15 +0010 0055 0065 1033

Notes. PNBD, Pareto/NBD; PGGG, Pareto/GGG. Values in bold describe the relative lift in MAE for the Pareto/GGG against the Pareto/NBD.

usually a relatively small segment, it deserves par-
ticular attention by managers because these valuable
customers are currently at risk of being lost. Accounting
for regularity helps to remove some of the ambiguity
regarding their future behavior.

• Finally, note that for the high-frequency, low-
recency segment, the mean number of transactions
during the holdout period x∗ is significantly lower for
regular than for random customers (2.31 vs. 3.49; see
Table 2). A purely RF-based model would not be able
to capture such a pattern.

These findings suggest refining the observation of
Zhang et al. (2015, p. 206) that “a buy-till-you-die
story performs well for nonclumpy customers, but
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Figure 4 Relative Lift in MAE vs. Regularity k
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not for clumpy ones.” Although the clumpiness phe-
nomenon might indeed be better accommodated in a
modeling framework that allows for a more complex
nonstationary repeat-buying behavior, we advocate
replacing the dichotomy of clumpy versus nonclumpy
with the understanding that timing patterns range
along a continuum between clumpy and regular (with
improved predictions for the latter when adopting the
Pareto/GGG).

In noncontractual settings, the expected number of
future transactions depends largely on the assessment
of a customer’s latent status. The BTYD model class
assumes that a customer who has defected is “lost for
good” and will not make any further transactions in the
future. To better understand the previous discussion
on the varying impact of regularity for predicting
future transactions (Table 2), a closer examination
of the functional shape of P4alive5 (see §3.3) and its
interplay with recency, frequency, and regularity is
helpful. Figure 5 displays the dependence of P4alive5
on observed recency for two levels of frequency (� ∈

81/611/269), for various degrees of ITT regularity (k ∈

8005111214181�9), and for a hypothetical customer with
a mean lifetime of 52 weeks (�= 1/52). The thick solid
curve (k = 1) displays the corresponding functional
shape of a Poisson purchase process, paired with an
exponentially distributed lifetime (i.e., Pareto/NBD).
The thin solid line (k = �) instead shows the extreme
case of equally spaced transaction timings. The dotted
line represents a clumpy customer, and the three dashed
lines represent various degrees of regularity. A closer
inspection of Figure 5 reveals that the deviation from
Pareto/NBD depends largely on whether the latest

transaction hiatus T − tx is greater or smaller than the
expected ITT. If the transaction is overdue (i.e., T − tx >
mean4ITT5), P4alive5 declines for regular customers,
and the magnitude of this shift depends on the strength
of the regularity.

Our motivating example in Figure 1 reflects this
finding: It indicates the timing patterns of customers
A and B with the same recency and frequency but
different degrees of regularity. Figure 5(a) also indicates
their approximate positions on the corresponding
P4alive5 curves. Their observed purchase hiatus of
14 weeks yields a 44% probability of being alive for
customer A with random purchase occurrences; it is
close to 0% for regular customer B. For the border
case with deterministic timing patterns, P4alive) falls to
zero immediately after the (constant) ITT has elapsed
without activity. In the case of clumpy patterns, with
strongly varying ITTs, the effect moves in the other
direction, resulting in greater uncertainty regarding
the latent activity state of the customer. This is exactly
reflected by the findings of Zhang et al. (2015) of
larger prediction errors for clumpy customers using
a BTYD model (in their case, the BG/BB by Fader
et al. 2010). For customers who were recently active
(again, in relation to their expected ITT), as depicted
to the right of the curves’ inflection points, we find
only marginal differences. Comparing Figures 5(a) and
5(b) further supports our previous finding from the
simulation study that the largest gain in predictive
accuracy should be expected for customers with high
frequency and low recency because, for these segments,
regularity allows us to remove some of the ambiguity
concerning the customer’s status.

In sum, our simulation study shows that the presence
of regularity allows for better predictability. Thus,
replacing the NBD with the more flexible GGG-type
transaction model is particularly advisable for data
sets exhibiting regular timing patterns.

4.2. Empirical Application of the Pareto/GGG
Model

We now empirically examine the importance of incor-
porating ITT regularity into stochastic models, using
six data sets that represent various settings.

• CDNOW: This data set includes 2,357 customers
of an online CD store (CDNOW) who were acquired in
the first quarter of 1997 and then observed over 1.5
years. This canonical data set has been studied and
benchmarked extensively in the marketing literature
(Fader and Hardie 2001; Fader et al. 2005a, b; Batislam
et al. 2007; Wübben and von Wangenheim 2008; Abe
2009; Jerath et al. 2011; Bemmaor and Glady 2012;
Zhang et al. 2015).

• Apparel and accessories: This data set includes
831 customers of an online apparel and accessories
retailer (www.m18.com) who were acquired in April
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Figure 5 Interplay of Recency, Frequency, Regularity, and P (alive)
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2009 and observed over the course of one year. This
data set came from Zhang et al. (2015), who kindly
provided us with access to their data.

• Donations: This data set includes 21,166 donors
to a nonprofit organization who were acquired in the
first half of 2002 and observed over 4.5 years. The data
set was provided by the Direct Marketing Educational
Foundation (see also Malthouse 2009, Bemmaor and
Glady 2012, Schweidel and Knox 2013).

• Groceries: These data came from an online retailer
offering a broad range of grocery categories. The total
observation period spans four years. Because customers’
acquisition date was not part of this data set, we
constructed a quasi cohort by limiting the analysis to
the 1,525 customers who purchased in the first quarter
of 2006 but not at all in the preceding two years.7 These
purchase data are available at the product category
level, which allows us to study purchase patterns by
category.

• Dietary supplements and office supplies: Two addi-
tional data sets come from an anonymous e-commerce
service provider, each consisting of 35 weeks of pur-
chase records for 1,000 randomly sampled customers.

All data sets contain the complete transaction records,
including exact dates. Repeated transactions by a cus-
tomer on a given day are treated as a single transaction.
Without loss of generality, the chosen unit of time for
our analysis is one week, and hence we provide the
reported lifetime and ITT estimates in weeks.8 Figure 6
provides an overview of all six data sets by displaying
the timing patterns of 40 randomly sampled customers,

7 Batislam et al. (2007) use this approach by left filtering a grocery
retail customer base with the requirement that it provides 11 months
of initial inactivity.
8 Note that the chosen unit of time is an arbitrary definition for
continuous-time BTYD models. It is only reflected in the scale
parameters of the purchase and dropout models, but does not impact
the predictions themselves.

plus the histogram of transaction counts divided by
calibration and holdout period. The displayed tim-
ing patterns reveal the sparseness of the available
customer-level information, which requires us to pool
data across customers. Furthermore, we can visually
detect the varying degrees of regularity across not only
the data sets but also the frequent customers in the
databases. We seek to quantify this regularity and its
heterogeneity by fitting the Pareto/GGG model.

For each data set, we fit both the Pareto/GGG and
Pareto/NBD models using MCMC sampling, with
the same settings as in the simulation study: four
chains with 8,000 samples, of which the initial 2,000
are the burn-in sample. For the donations data set, we
increased the samples to 30,000 because of the high
autocorrelation in the draws for the lifetime parameters
s and �.

A summary overview of the resulting posterior
distributions for the model parameters is given in
Table 3; the ranges of the respective posterior estimates
for regularity are depicted in Figure 7. For the CDNOW
data set, the regularity parameter k varies narrowly
around 1, which confirms the validity of assuming a
Poisson purchase process for this specific customer
base. The estimates for the remaining Pareto/GGG
parameters closely match those for Pareto/NBD, and
both models result in similar fit and predictions. For
the apparel and accessories retailer, the estimates for
k also exhibit little variation, although the timing
patterns appear rather irregular (kq50 = 0085). For the
remaining four data sets, we detected varying degrees
of regularity, with a median k ranging from 1.78 for
dietary supplements to 3.47 for the grocery retailer (see
Table 3). However, as can also be seen from Figure 7, the
individual-level estimates of the regularity parameter k
vary significantly within these customer bases. In the
grocery data set, for example, close to 10% of customers
are estimated to purchase with timing patterns that are
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Figure 6 Sampled Timing Patterns and Histograms of Transaction Counts
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Table 3 Selected Quantiles of the Posterior Distributions for Pareto/GGG and Pareto/NBD Parameters

tq50 �q50 rq50 �q50 sq50 �q50 kq10 kq50 kq90 IT Tq50 �q50 P (alive) (%)

CDNOW PGGG 4004 3809 005 1003 006 1105 0086 1004 1029 2602 2401 44
PNBD 006 1006 005 803 2508 2502 45

Apparel and accessories PGGG 4309 5100 005 705 006 1901 0069 0085 1003 1800 4201 53
PNBD 006 704 006 1500 1601 3206 47

Donations PGGG 402 104 100 7700 802 1,565 1033 2070 4088 9604 13604 42
PNBD 006 7704 200 1,432 15803 62807 81

Groceries PGGG 107 004 009 501 004 405 1002 3047 9024 701 1707 35
PNBD 008 507 004 505 800 2807 43

Dietary supplements PGGG 508 300 007 1707 005 505 1000 1078 3020 3809 1901 48
PNBD 005 2005 003 1200 7005 9901 71

Office supply PGGG 408 201 003 403 004 602 1007 2008 3066 4808 3406 59
PNBD 002 405 003 2007 9506 15905 80

Notes. PNBD, Pareto/NBD; PGGG, Pareto/GGG. Values in bold describe the relative lift in MAE for the Pareto/GGG against the Pareto/NBD.

more irregular than random (k < 1), and another 10%
exhibit strong regular patterns with k larger than 9.24
(see the corresponding quantiles for kq10 and kq90 in
Table 3).

We also investigated how many of the individual-
level marginal posterior densities for which we have
90% confidence that the timing patterns are more
regular than random (i.e., P4k > 15 > 0095. Whereas for
the CDNOW and the apparel and accessories data sets
there were no such customers, the share of customers
who satisfy this condition is 95% for donations, 72% for
groceries, 58% for dietary supplements, and 80% for
the office supply data set. This suggests that regularity
is a widely prevalent phenomenon at least for some
of the empirical data we explored and for substantial
fractions of customers within these data sets. Our
observation is perfectly consistent with those from the
related literature reviewed by §2 and with the findings
by Zhang et al. (2015), who report the presence of
clumpy timing patterns to be particularly present in
online visitations and to a far lesser extent for repeated

Figure 7 Interquartile Ranges for Posterior Distributions of Regularity Parameter k
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purchases. It is an interesting research subject to study
whether these findings also hold for a broader set of
empirical settings. Furthermore, Table 3 shows that for
data sets with mainly regular patterns, the Pareto/NBD
results in significantly higher estimates for lifetime � ,
and thus P4alive5, compared to Pareto/GGG. This
finding accords with those from the simulation study,
which diagnosed a systematic bias for the Pareto/NBD
in the presence of regularity.

Corresponding to the simulation study, we also
assess forecasting accuracy using the MAE of the
predicted number of transactions during the holdout
period and the comparative lift when we incorporate
regularity. In addition, we provide the MAE for a simple
heuristic forecast following a method suggested by
Wübben and von Wangenheim (2008). Table 4 reports
the results for all six empirical data sets, which conform
to those of the simulation study: the stronger the ITT
regularity, the greater the lift in predictive accuracy,
whereas for cases with predominantly random purchase
occurrence, the models perform equally well. Note
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Table 4 Impact of Incorporating Regularity by Data Set

Lift Mean absolute error
Holdout

k̂wheat kq50 Relative (%) Absolute PGGG PNBD Heuristic mean4x∗5

CDNOW 100 100 +2 +0002 0076 0077 1002 0080
Apparel and accessories 006 008 −2 −0001 0044 0043 0056 0038
Donations 202 207 +16 +0006 0029 0035 0034 0028
Groceries 205 304 +8 +0013 1039 1052 2057 2022
Dietary supplements 200 108 +5 +0001 0015 0016 0015 0009
Office supply 108 201 +4 +0001 0028 0030 0030 0032

Notes. PNBD, Pareto/NBD; PGGG, Pareto/GGG. Values in bold describe the relative lift in MAE for the Pareto/GGG against the Pareto/NBD.

that by taking regularity into account, the probabilistic
model outperforms the heuristic in all six cases. Next
to the median of the posterior for the Pareto/GGG
regularity parameter k, Table 4 also reports Wheat
and Morrison’s (1990) summary statistic calculated
according to Equation (1). Except for the grocery data
set, which is characterized by a considerable degree
of heterogeneity, k̂wheat approximates the regularity
estimated by the Pareto/GGG fairly well. Given our
empirical findings and the diagnostic power of the
Wheat and Morrison (1990) summary statistic, we
expect that customer-base analysts would benefit from
the improved performance of the Pareto/GGG relative
to the Pareto/NBD when k̂wheat is estimated to be
approximately 1.5 or higher. Note, however, that this
is a data-set-level statistic and ignores any potential
heterogeneity across individual customers.

To illustrate the changes in the individual-level esti-
mates when we account for regularity, we inspect
three selected customers from the grocery data set in
detail. Figure 8 displays the timing patterns during the
calibration and holdout periods, together with their
corresponding Pareto/GGG and Pareto/NBD param-
eter estimates. Customer (a) engaged in four rather
regularly spaced transactions during the calibration
period, but was not active in the last months of 2006
(the end of the calibration period). The Pareto/GGG
estimates a strong degree of regularity (kq50 = 601) for
this customer and assigns a probability of only 56%
that this customer will purchase again, compared with
the significantly higher probability of 77% according
to the Pareto/NBD model. Note that the posterior
probability density for the next transaction arrival
shows a steep decline, implying that the next purchase
event is overdue. To marketing managers, these are
clear signals that the customer (rightly) is at risk of
being lost and that appropriate marketing actions are
called for. The Pareto/GGG performs substantially
better at identifying this than does the Pareto/NBD, for
which the long transaction hiatus is not as strong an
indicator of defection. Customer (b) exhibits similarly
strong regularity, but has remained active recently.
Because of the recent transaction, P4alive5 is (correctly)

assessed equally high by the two models. However,
the posterior probability density estimated by the
Pareto/GGG points to an expected short inactivity
period, after which transactions are expected to fall in
a rather narrow bandwidth. Customer (c) undertook
five rather irregularly spaced transactions in 2006,
resulting in an estimate of kq50 = 009, which further
demonstrates the variety of timing patterns that can
appear in one and the same customer cohort. Because
of the clumpy ITT pattern, P4alive5 is also slightly
elevated when it is taken into consideration. In sum,
these findings reinforce the previously discussed model
behavior, as depicted in Figure 5. Apparently, the
clumpy case is difficult to predict for both models,
and the Pareto/NBD assumptions appear to be not
particularly costly relative to the Pareto/GGG.

To conclude our empirical application, we exploit
the shopping basket data at the product category level
in the grocery data set to provide some further insights
into which categories exhibit stronger regularities than
others. For each of the 143 product categories, we
construct quasi cohorts of customers who did not
purchase in that category in 2004 and 2005 but did
so in the first half of 2006. Using these cohorts, we
then fit a Pareto/GGG model using all of 2006 as a
calibration period, obtaining estimated distributions for
k in each category. Among the most regularly bought
categories, we find perishable food categories such as
salad (kq50 = 707) and fresh cheese (kq50 = 600), as well as
packaged, regularly consumed goods, such as washing
detergents (kq50 = 600), fabric conditioners (kq50 = 500),
aluminum foil (kq50 = 407), ground coffee (kq50 = 402),
and toilet paper (kq50 = 304). The less regular categories
still exhibit median k values greater than 1.5, as exem-
plified by categories such as pantyhose (kq50 = 105),
spices (kq50 = 109), and flour (kq50 = 200). A benchmark
of the Pareto/GGG against the Pareto/NBD further
showed that for 140 of the 143 available categories,
we increased predictive accuracy by accounting for
observed regularity (the detailed results are available
on request). As our findings suggest, ITT regularity
generally translates into lower prediction errors. Thus,
even for customers exhibiting considerable uncertainty
in their future purchase behavior at the firm-level,
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Figure 8 Selected Grocery Customers and Their Posterior Probability of Next Transaction Timing
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multicategory firms such as the grocery retailer in
the above example could greatly benefit from leverag-
ing information on category-level regularities in their
overall assessment of customer activities.

5. Relationship Between the Regularity
Parameter k and the Clumpiness
Metric C

Zhang et al. (2013) introduce a class of measures to
capture clumpiness in incidence data. A subsequent
contribution by Zhang et al. (2015) demonstrates the
application of these measures to customer-base analysis
using a specific C metric (i.e., the Hp variant) for
a variety of purchase (purchase C) and online visit
(visit C) patterns. The main empirical findings related
to our research are that (1) clumpiness is a prevalent
phenomenon, but mainly in the context of online visits
and digital media consumption; (2) the inclusion of the
C metric improves the data-fitting capability of RFM-
based regression models of customers’ future (i.e., out-
of-sample) activity; and (3) clumpy customers tend to
be more active than regular ones in future periods.9 Our
presented research supports these findings, provides a
link to the theoretical framework underlying the well-
established class of BTYD models and thus contributes
to improving our understanding of them, and develops
a predictive model capable of extrapolating beyond the
calibration period.

To establish the relationship between the Zhang
et al. (2015) C metric and the shape parameter k of
the gamma-timing model of the Pareto/GGG, we con-
ducted another simulation study. For various values

9 Note the positive sign of the regression coefficient of purchase C in
Table 4 reported by Zhang et al. (2015).

of k, we generated 10,000 Gamma4k1k�5 timing pat-
terns with n= 6 and n= 12 events each and calculated
their Hp metric accordingly. The parameter � is chosen
sufficiently small to avoid zero-length ITTs when con-
verting to discrete time units. The solid black curves
in Figure 9 visualize the median over the Hp samples
and reveal a strictly monotonous relationship between
C and k: the higher k is, and thus the less variation
we have in the ITTs, the lower the C-measure will
be. Thus, despite being designed by the authors to
measure clumpiness, the metric C also captures the
degree of regularity.

Figure 9 further shows, for increments of k, the
variation in the measure C as vertical lines, with the
sampled 5% and 95% quantiles indicated by whiskers.
Comparing Figure 9(a) with Figure 9(b) also demon-
strates that the more transactions we observe per
customer, the more confident we can be regarding
the degree of clumpiness or regularity, respectively. In
both graphs, there is significant overlap between the
sampled C values across different timing patterns, but
this is particularly pronounced for a smaller number
of transactions. Furthermore, we extend the whiskers
horizontally for the case of a simulated Poisson process
(i.e., k = 1) by dotted lines, as these boundaries serve
as the rejection regions for detecting clumpiness as
described in Zhang et al. (2013). We find that only in
cases of very strong clumpiness or strong regularity
(marked by the whiskers in bold), the C measure is
able to correctly reject the null hypothesis of randomly
distributed events for more than half of the customers.
Therefore, in settings characterized by customers with
a small number of events (e.g., n < 10) during the
observation period, analysts should be cautious when
calculating the C measure, because it bears a significant
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Figure 9 (Color online) Calculations of Metric C for the Range of Gamma4k1 k�5 Distributed Events
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amount of uncertainty. The proposed Pareto/GGG
addresses this problem in a Bayesian manner by first
forming a prior belief regarding the timing patterns
based on all customers and subsequently gradually
updating this belief with each additional transaction at
the customer level.

Another potential shortcoming of the C measure
is its insensitivity in distinguishing between clumpy
interevent timing and latent defection or churn. Any
defected customer with a prolonged phase of inactivity
at the end of the observation period will be biased
toward clumpiness. This can also be seen from the evo-
lution of the C measure for the third sample customer
in Figure 2 of Zhang et al. (2013). When simulating
an entire customer base following the Pareto/NBD
assumptions, whereas parameters r , �, s, and � are set
to match the CDNOW parameter estimates (Fader et al.
2005a), 10% of the customer base will be incorrectly
classified as clumpy, despite the rejection rate of the test
being set to 5%. In these cases, the events might mistak-
enly appear to be “clustered” due to a long period of
inactivity after a customer has dropped out. For churn
settings with higher frequency (r = 0075, �= 5, s = 0075,
�= 5, T = 52), the type I error can be as high as 35%.

However, we need to concede here that Zhang et al.
(2015) primarily focus on visit C , and in digital settings
such as those studied by the authors, infrequent visits
and churn might not be a substantial issue. Thus, in
such (or similar) settings, the C metric actually might be
a useful tool for scanning a data set before any formal
model fitting. However, in the case of purchase histories
with significant shares of customers who purchase less
frequently (n< 10) and/or where customer defection
is prevalent, the Pareto/GGG offers a descriptive and
predictive alternative that is capable of avoiding both
of the above-described shortcomings of the C measure.

6. General Discussion and Future
Research

Many companies exploit the continuous influx of trans-
action data to make inferences about the future activity

of their customers and related metrics, such as CLV and
its subcomponents (Fader et al. 2005a). Yet, despite the
considerable scale of data available at the overall level,
little information is typically available at the individual
level because a significant share of customers engages
in few (if any) repeat transactions. Thus, it is common
practice to pool information across customers, and
probabilistic purchase models based on RF data remain
the primary means for doing so (Schwartz et al. 2014).

However, by condensing historic transaction records
to RF summary statistics alone, these models discard
any additional customer-level information that is con-
tained in the past timing patterns but equally easily
available to the analyst. Recently, Zhang et al. (2015)
questioned whether recency and frequency are sufficient
statistics to fully summarize a customer history and
posit that adding an individual-level statistic reflect-
ing a customer’s interevent timing patterns helps to
better understand CLV and its subcomponents. The
authors propose a metric-based approach to extend
the widely adopted RF framework, with a measure
to capture clumpiness in timing patterns, and they
also demonstrate its usefulness for predicting customer
value. Whereas Zhang et al. (2015) are very clear in
positioning their work as a ”measurement paper,” our
contribution is a “modeling paper.” We complement
their timely and important research by introducing a
model-based approach, which accommodates a wide
range of timing patterns (regular, random, and irregular)
but adaptively pools the information across customers
to attain reliable, individual-level estimates. A prob-
abilistic modeling approach to capture regularity is
not new to marketing (Chatfield and Goodhardt 1973,
Morrison and Schmittlein 1988), but this research and
the proposed Pareto/GGG model make two novel con-
tributions. First, we propose adaptively pooling the
sparse, individual-level information on timing patterns
across customers and then leveraging heterogeneity
in regularity to predict future behavior. Second, we
build intuition and consistently demonstrate using an
extensive simulation study and empirical applications
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that, particularly in a BTYD setting, accounting for reg-
ularity is highly beneficial because it facilitates making
inferences regarding the customer’s latent status. In
such settings, we gain the most in terms of predictive
accuracy for the managerially important segment of
highly frequent but recently inactive customers. All of
these benefits entail only marginal additional costs in
terms of data requirements, which involve simple and
sufficient summary statistics of historical transaction
records.

Beyond developing the Pareto/GGG model and
comparing it to the Pareto/NBD model, our research in
turn offers several important managerial implications.
First, better predictions of important CLV components
are of value to customer relationship managers per se
because such improved estimates help them to prior-
itize customers more effectively. Second, the model
results in sound customer-level estimates of the regular-
ity parameter k and thus provide a valuable customer
metric (as illustrated by Figure 8). For example, mar-
keting managers can use this diagnostic information
as a basis for segmenting customers (e.g., into irreg-
ular, random, and regular segments), as well as to
score them according to their attractiveness and pre-
dictability. The corresponding R- and F -related metrics
could define further subsegments. Third, managers
might apply this segmentation effectively in their cus-
tomer targeting and resource allocation decisions. For
example, regular customer types could be targeted
with cross- or upselling options prior to their next
projected visit; “overdue” regular customers should
be gently reminded to return or solicited to provide
customer feedback. Finally, companies operating in
multiple categories could also learn from category-
specific purchase timings to draw inferences concerning
the (overall) activity status of their customers. For
example, even customers showing random (or clumpy)
ITT patterns at the firm level could reveal some aspects
of regularity at the category level when examining
their shopping baskets in greater detail, i.e., categories
they purchase on a more regular basis. Indeed, our
empirical study using online grocery data showed that
there is considerable variation across categories. Model
builders could leverage this information by extending
our approach in an integrated multicategory purchase
timing model. Managers could then benefit from the
potential insights from such an approach by deriving
customized marketing efforts across categories.

In this paper, our main focus has been on the accu-
rate individual-level prediction of the expected number
of future transactions, which could easily be converted
into a discounted quantity to yield a net present value
as suggested by Fader et al. (2005b). Although (dis-
counted) expected transactions are an important aspect
of customer valuation, extending the Pareto/GGG
toward a full CLV model would require a submodel

for the purchase amount per transaction. The flexi-
bility of our hierarchical Bayesian model approach
permits the incorporation of such an extension, for
example, by assuming a standard normal (Schmittlein
and Peterson 1994), a log-normal (Borle et al. 2008), or
a gamma-gamma (Colombo and Jiang 1999) submodel
for purchase amounts. With such an extension toward
a fully faceted model to predict residual CLV for a
customer base, relationship managers could benefit
further from the insights we have gained from applying
the Pareto/GGG in our empirical studies.

To our knowledge, this research represents the first
systematic study demonstrating that the presence of
ITT regularities improves the predictability of future
purchase behavior. Regarding further research, we
anticipate similar gains from our proposed gamma-
distributed timing model for inferring customers’ latent
activity states not only in BTYD settings but also for the
broader class of hidden Markov models (Schwartz et al.
2014),10 with the promise of detecting changes between
high-frequency and low-frequency purchase phases (or
vice versa) more quickly. This also includes models in
which customers are allowed to make back-and-forth
transitions between an active and an inactive state
(e.g., an “on and off” purchasing model; see Schwartz
et al. 2014). We conjecture that modeling approaches
accounting for such nonstationary repurchase behavior
might be good candidates for capturing clumpy ITT
patterns (interpreted as “episodes” with higher pur-
chase propensities followed by a period with lower
or even no activity) and to translate this capability
into better predictions of future transactions. However,
such models typically come at some additional costs
because they require complete purchase histories and
not merely summary statistics.

Certainly, we also have to acknowledge that, similar
to any other BTYD model, the Pareto/GGG implicitly
assumes stationary marketing activities in both the
calibration and forecasting periods. It thus can serve as
a baseline for benchmarking the impact of changes
in target marketing actions (Fader et al. 2005a). It is
beyond the scope of this paper but would be important
yet challenging to build a model that incorporates
marketing covariates, in addition to accounting for
ITT regularities. The hidden Markov model-based
approaches presented by Netzer et al. (2008) and
Schweidel et al. (2011) offer promising starting points
for endeavors to model the interplay between ITT
regularity and marketing actions.

Finally, several other extensions of our research
would be welcome. In particular, we call for studies that
translate the general idea underlying the Pareto/GGG

10 Note that BTYD models are also constrained variants of hidden
Markov models, with two states, one of which is an absorbing,
inactive state.
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into a discrete-time setting. The BG/BB introduced by
Fader et al. (2010) could serve as a modeling frame-
work, although researchers would need to relax the
memoryless binomial assumption for purchase occur-
rences. In addition, the modeling flexibility gained
by an MCMC sampling scheme might facilitate links
between individual-level parameters (�, �, but also k)
and customer-specific covariates, as well as allow for
correlations between them, as demonstrated by Abe
(2009). With a link between the purchase and dropout
processes, the effect of ITT regularities on customers’
activity states could be studied even more thoroughly
than we have done in this study.
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Appendix A. Derivation of P(alive)
We provide the derivation of the probability of a customer still
being alive at time T here (Schmittlein et al. 1987, Appendix 1).
Let � denote the individual-level parameters 8k1�1�9, let �
indicate the observed data 8t11 0 0 0 1 tx1 T 9, and let �T−tx

refer to
the event of no transaction occurring in 4tx1T 7. Then,

P4� >T ��1�5=
f14� ��1� >T 5P4� >T ��5

f14� ��1� >T 5P4� >T ��5+f24�1tx<�≤T ��5
0

(A1)
The assumption of exponentially distributed lifetimes
gives us

P4� > T � �5= e−�T 0 (A2)

The likelihood functions f1 and f2 can be further split into
independent components

f14� � �1 � > T 5 = f34� � tx1�T−tx
1 �1 � > T 5

· f44tx1�T−tx
� �1 � > T 5 and (A3)

f24�1 tx < � ≤ T � �5 = f54� � tx1��−tx
1 �5

· f64tx1��−tx
1 tx < � ≤ T � �50 (A4)

Conditional on the time of the last transaction tx, the exact
timing of the earlier transactions t11 0 0 0 1 tx−1 is independent
of the subsequent timing of the dropout. Therefore, f3 = f5,
and the according terms cancel out in Equation (A1).

Conditional on the dropout � > T , the timing of the last
transaction tx and an observed waiting time of T − tx are
independent events that can be derived separately. Because
the sum of x independent and identically distributed variables

ãtj ∼ Gamma4k1 k�5 is a gamma-distributed random variable
with an updated shape parameter kx, it follows that

f44tx1�T−tx
� �1 � > T 5 = f 4tx � x1�5f 4�T−tx

� �5

=
4k�5kx

â4kx5
tkx−1
x e−k�tx

· 41 − Fâ 4T − tx � k1k�550 (A5)

Similarly, f6 can be expressed by integrating f4 over tx < � ≤ T ,
such that � is exponentially distributed

f64tx1��−tx
1tx<�≤T ��5

=

∫ T

tx

f44tx1�y−tx
��1y>tx5f 4�=y ��5dy

=
4k�5kx

â4kx5
tkx−1
x e−k�tx

∫ T

tx

(

1−Fâ 4y−tx �k1k�5
)

�e−�ydy0 (A6)

Putting it all together, we obtain

P4� > T � k1�1�1 t11 0 0 0 1 tx1T 5

=

(

1 +

∫ T

tx
41 − Fâ 4y− tx � k1k�55�e−�ydy

41 − Fâ 4T − tx � k1k�55e−�T

)−1

0 (A7)

For the degenerate case of k = 1, this expression can be
simplified to the Pareto/NBD result published by Schmittlein
et al. (1987)

Fâ 4T − tx � 11�5 = 1 − e−�4T−tx5

P4alive5 =

(

1 +

∫ T

tx
e−�4y−tx5�e−�y dy

e−�4T−tx5e−�T

)−1

=

(

1 −
�

�+�

e−y4�+�5�Ttx

e−4�+�5T

)−1

=

(

1 −
�

�+�
41 − e4T−tx54�+�55

)−1

0

Appendix B. Further Details on Simulation Study
In total, 160 data sets based on a variety of parameter settings
for N , r , �, s, �, t, and � have been generated and used for
assessing the predictive accuracy of the Pareto/GGG and
Pareto/NBD models. For each setting, we ran four separate
MCMC chains with 8,000 iterations each, then retained only
every 200th iteration after an initial burn-in of 2,000 iterations.
To check for convergence, we used the Gelman diagnostic
(Gelman and Rubin 1992). Figure B.1 depicts an example
MCMC run, with the left-hand side showing the trace plots of
four separate MCMC chains for each of the six heterogeneity
parameters, and the right-hand side the corresponding sam-
pled posterior densities. Running this configuration for 1,000
customers requires 160 million individual-level parameter
draws (1,000 customers × 5 parameters × 4 chains × 8,000
iterations); for our R/Rcpp (R Core Team 2014, Eddelbuettel
and François 2011) implementation, on a laptop equipped
with a 2.5 GHz quad-core Intel Core i7 chip, running the
four chains in parallel took approximately four minutes.
A GPU-based implementation could speed up the runtime
even further (White and Porter 2014).

Tables B.1 and B.2 report the relative as well as absolute
lift in customer-level mean absolute error for the holdout
period for all 160 simulated worlds.
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Figure B.1 (Color online) MCMC Chains for the Simulated Scenario with t = 51 � = 2051 r = 00251 �= 51 s= 00251 �= 5, and N = 11000

Table B.1 Relative Lift in Customer-Level MAE for Holdout Period

N = 1,000 (%) N = 4,000 (%)

r 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
s �\� 5 5 15 15 5 5 15 15 Mean (%)

t = 106/y = 004 0025 5 +8 +6 +5 +12 +8 +11 +4 +11 +8
mean(k) = 4 0075 5 +11 +10 +11 +19 +11 +10 +22 +13 +14

0025 15 +10 +10 +12 +12 +6 +8 +8 +10 +10
0075 15 +16 +10 +20 +17 +11 +11 +12 +16 +14

t = 5/y = 205 0025 5 +5 +5 +6 +9 +5 +6 +6 +8 +6
mean(k) = 2 0075 5 +4 +4 +17 +12 +7 +7 +19 +10 +10

0025 15 +4 +7 +5 +11 +4 +5 +7 +7 +6
0075 15 +7 +4 +14 +11 +7 +6 +14 +9 +9

t = 6/y = 4 0025 5 +3 +4 0 +3 +3 +2 +4 +2 +3
mean(k) = 1.5 0075 5 +7 +5 +13 +7 +3 +3 +10 +5 +7

0025 15 +4 +4 +4 +5 +2 +2 +3 +3 +3
0075 15 +6 0 +7 +9 +5 +3 +10 +5 +5

t = 8/y = 8 0025 5 −4 0 0 0 0 −2 0 −2 −1
mean(k) − 1 0075 5 +6 −6 +14 0 +5 0 +11 +3 +4

0025 15 −1 0 0 −2 −2 0 −2 −2 −1
0075 15 0 0 +9 −3 0 0 +2 0 0

t = 17/y = 20 0025 5 0 −1 0 −2 −1 −2 −2 −2 −1
mean(k) = 0.85 0075 5 +1 0 +7 +2 −2 −3 +4 0 +1

0025 15 −1 −3 −2 −4 −1 −2 −3 −2 −2
0075 15 −3 −1 +1 −4 −1 −2 +1 −3 −2

Mean +4 +3 +7 +6 +3 +3 +7 +4

Table B.2 Absolute Lift in Customer-Level MAE for Holdout Period

N = 1,000 N = 4,000

r 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
s �\� 5 5 15 15 5 5 15 15 Mean

t = 106/y = 004 0025 5 +0005 +0009 +0002 +0011 +0006 +0018 +0002 +0010 +0008
mean(k) = 4 0075 5 +0003 +0006 +0001 +0006 +0003 +0007 +0003 +0004 +0004

0025 15 +0008 +0019 +0005 +0012 +0005 +0016 +0004 +0010 +0010
0075 15 +0008 +0013 +0005 +0011 +0006 +0014 +0003 +0010 +0009
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Table B.2 (Continued)

N = 1,000 N = 4,000

r 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
s �\� 5 5 15 15 5 5 15 15 Mean

t = 5/v = 205 0025 5 +0004 +0008 +0002 +0008 +0004 +0010 +0002 +0008 +0006
mean(k) = 2 0075 5 +0001 +0002 +0003 +0004 +0002 +0005 +0002 +0003 +0003

0025 15 +0003 +0013 +0002 +0012 +0004 +0010 +0003 +0008 +0007
0075 15 +0003 +0005 +0004 +0007 +0003 +0007 +0004 +0006 +0005

t = 6/y = 4 0025 5 +0002 +0006 +0000 +0003 +0002 +0004 +0002 +0002 +0003
mean(k) = 1.5 0075 5 +0002 +0003 +0002 +0002 +0001 +0002 +0001 +0002 +0002

0025 15 +0003 +0008 +0002 +0005 +0002 +0005 +0002 +0004 +0004
0075 15 +0003 +0000 +0002 +0006 +0003 +0004 +0003 +0003 +0003

t = 8/y = 8 0025 5 −0003 −0001 −0000 −0000 −0000 −0004 −0000 −0002 −0001
mean(k) = 1 0075 5 +0002 −0004 +0002 +0000 +0001 +0001 +0002 +0001 +0001

0025 15 −0001 −0000 −0000 −0002 −0002 −0002 −0001 −0002 −0001
0075 15 +0000 −0001 +0003 −0002 −0000 −0001 +0001 −0000 −0000

t = 17/y = 20 0025 5 −0000 −0002 −0000 −0002 −0001 −0003 −0001 −0003 −0002
mean(k) = 0.85 0075 5 +0001 −0000 +0001 +0001 −0001 −0002 +0001 −0000 +0000

0025 15 −0001 −0007 −0001 −0005 −0001 −0005 −0001 −0003 −0003
0075 15 −0002 −0002 +0000 −0003 −0001 −0003 +0000 −0002 −0001

Mean +0002 +0004 +0002 +0004 +0002 +0004 +0001 +0003
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