Ticking away the moments: Timing regularity helps to better predict customer activity

Michael Platzer
WU Vienna University of Economics and Business, Department of Marketing, A-1020 Vienna, Austria, michael.platzer@gmail.com

Thomas Reutterer
WU Vienna University of Economics and Business, Department of Marketing, A-1020 Vienna, Austria, thomas.reutterer@wu.ac.at

Accurate predictions of a customer’s activity status and future purchase propensities are crucial for managing customer relationships. This article extends the recency-frequency paradigm of customer-base analysis by integrating regularity in interpurchase timing in a modeling framework. By definition, regularity implies less variation in timing patterns and thus better predictability. Whereas most stochastic customer behavior models assume a Poisson process of “random” purchase occurrence, allowing for regularity in the purchase timings is beneficial in noncontractual settings because it improves inferences about customers’ latent activity status. This especially applies to those valuable customers who were previously very frequently active but have recently exhibited a longer purchase hiatus. A newly developed generalization of the Pareto/NBD model accounts for varying degrees of regularity across customers by replacing the NBD component with a mixture of gamma distributions (Pareto/GGG). The authors demonstrate the impact of incorporating regularity on forecasting accuracy using an extensive simulation study and a range of empirical applications. Even for mildly regular timing patterns, it is possible to improve customer-level predictions; the stronger the regularity, the greater the gain. Furthermore, the cost in terms of data requirements is marginal because only one additional summary statistic, in addition to recency and frequency, is needed that captures historical transaction timing.

Key words: customer-base analysis; customer lifetime value; purchase regularity; stochastic prediction models; noncontractual settings; Pareto/NBD
1. Introduction

The song "Time" by world-famous rock band Pink Floyd is about how a lifetime can rush by and that many people do not realize this until it is too late. This anecdotal evidence by Pink Floyd’s songwriter Roger Waters also mirrors some facets of enduring, but noncontractual, customer-firm relationships. In such settings, managers are often left with an uncomfortable degree of ambiguity concerning how to react to the moments that are ticking away with customers who were previously active but have recently grown "silent" in interacting with the focal firm. This paper proposes to consider past timing patterns when interpreting a customer’s most recent activity hiatus. By introducing a new probabilistic model for customer-base analysis, the Pareto/GGG, we will show that regularity in interevent timings helps to better predict customer activity.

In recent years, customer-base analysis has become increasingly popular among marketing analysts and data scientists (Winer 2001, Fader and Hardie 2009). Triggered by the availability of vast amounts of customer-level transaction data, combined with the facilitated access to and greater usability of sophisticated models, this popularity is also paralleled by the growing managerial interest in residual customer lifetime value (CLV) and its subcomponents as key metrics for managing customer-centric organizations (Shah et al. 2006, Tirenni et al. 2007, Kumar et al. 2008, Kumar 2008, Fader 2013). One of the main challenges in such analyses is accurately predicting future purchase behavior when customer-firm relationships are of a noncontractual nature (Reinartz and Kumar 2000, Gupta et al. 2006). First, in such a setting, a customer’s current status at time \(T \) is not directly observable by the organization but must be inferred indirectly from past activity. Second, the available historical purchase data is right-censored at time \(T \), such that the full lifetime of a customer cohort has yet to be observed. Third, the amount of customer-level data tends to vary significantly. In general, despite the richness of the data in the aggregate, only few transactions are observed for most customers, and hence to extract the most information from the available data, marketing analysts need to adaptively pool information across customers.

Figure 1 illustrates the transaction records of two hypothetical customers in a noncontractual setting; the solid black dot indicates the first purchase, and the circles represent repeat purchases.
Both cases exhibit identical values of the two widely used statistics to summarize observed transaction histories, namely recency (R, indicating the date of the last transaction; here: \(t_6 = 38 \)) and frequency (F, or the total number of transactions; here: \(x = 6 \)). The key question for managers is to determine which customer is more valuable to the company at the current time \(T = 52 \) and thereafter. Applying a purely recency-based heuristic, such as the “hiatus heuristic” used by Wübben and von Wangenheim (2008), would leave managers undecided. The same applies to simple RF-based customer scoring models (Malthouse 2001, Malthouse and Blattberg 2005), which were originally imported from direct marketing and remain popular among many practitioners for valuing their customers. A series of increasingly sophisticated probabilistic models link simple RF summary statistics with a theoretically well-grounded behavioral story of customers’ repurchase behavior and explicitly integrate latent customer attrition into the modeling framework (Fader and Hardie 2009). These so-called buy-till-you-die (BTYD) models represent the well-established standard approach used by data scientists and analysts to predict crucial CLV components (such as the expected number of future purchases) and have been applied in a wide variety of industries (Wübben and von Wangenheim 2008).

In a standard BTYD model, however, customers \(A \) and \(B \) would also be evaluated equally (same R and F), which is a direct consequence of the model’s assumptions regarding the purchase process of active customers. For example, the most widely recognized benchmark BTYD model, the Pareto/NBD (Schmittlein et al. 1987), assumes a Poisson purchase process and an exponentially distributed lifetime. The two corresponding customer-level parameters can vary across customers, following independent gamma distributions. Because the gamma-exponential mixture results in a Pareto distribution, whereas the gamma-Poisson mixture leads to a negative binomial distribution (NBD), the model is referred to as Pareto/NBD. Among the many variations and extensions of the Pareto/NBD model (Fader and Hardie 2009), most retain a Poisson purchase process, in which the time between two purchases is exponentially distributed. This implies that the most likely time for a repurchase is immediately after a purchase (mode zero). Furthermore, because of the memoryless property of the exponential distribution, the time elapsed since the last purchase does not influence the timing of the next purchase (Chatfield and Goodhardt 1973).

Due to these properties, NBD-based models interpret the purchase hiatus at the end of the observation period equally for both customers in Figure 1. However, their observed intertransaction timing (ITT) patterns tell a different story: Customer \(B \) shows a regular repurchase pattern, with narrowly distributed ITTs. The long waiting time since the last transaction thus differs from that

1 The popularity of BTYD models also has benefited greatly from Excel-based implementations (Fader et al. 2005a) and the more recent availability of open-source implementations in more sophisticated programming environments, such as the R package BTYD (Dziurzynski et al. 2014).
customer’s individual norm, suggesting that B may have actually defected. In contrast, the recent purchase hiatus exhibited by customer A has been observed before \((t_3 - t_2)\), and hence it does not provide a similarly clear indication of whether this person will be active in the future. A model that adequately accounts for these differences in timing patterns would thus assign a significantly lower probability of future activities to the regular but “overdue” customer relative to the customer purchasing more irregularly. Therefore, these two customers also deserve to be treated differently in terms of allocating marketing resources and tailoring marketing campaigns to them. Efforts need to be undertaken to win back customer B, whereas customer A could be targeted with up- and cross-selling opportunities, as the next purchase event is anticipated to take place soon.

Recently, in a similar vein, but with opposite signs, Zhang et al. (2015) introduce the concept of *clumpiness* in the marketing literature and propose extending the RFM-based framework for CLV predictions by including a metric-based approach that captures variations in timing patterns across customers. By definition, their proposed clumpiness metric C takes its minimum value with equally spaced events; hence, clumpiness can be understood as the opposite of regularity. Such non-Poisson-like, “clumpy” patterns of rapidly occurring events separated by longer periods of inactivity can occur, for example, in digital media consumption and website visits (e.g., YouTube, Amazon, eBay, Hulu), where many consumers tend to “binge”. Barabasi (2005) lists further examples of certain human activities that exhibit such “bursts” of activity, followed by longer periods of inactivity, and shows that such patterns can arise as a consequence of a priority-driven decision process. However, there is also evidence that more regular timing patterns are prevalent in other contexts (Chatfield and Goodhardt 1973, Gupta 1991, Wu and Chen 2000, Bardhan et al. 2015), such as purchases of packaged consumer goods that are frequently consumed (e.g., food, beverages, detergents, toiletries). The consumption patterns for these products are often regular per se and thus trigger regular purchases. Furthermore, if many acts of consumption are required to initiate the need for repurchase (e.g., breakfast cereals, ground coffee, toothpaste, toilet paper), then even if consumption timing is random, purchase timing still will appear regular. Intuitively, this regularity results when variations in interconsumption times cancel one another out when summed together2.

In this paper, we respond to the call by Zhang et al. (2015) to develop a model-based approach that accommodates ITT patterns in predicting future purchase activities. Our proposed model builds on a probabilistic BTYD framework and leverages information on timing patterns to make improved inferences regarding customers’ activity status. We develop a Pareto/NBD variant that replaces the NBD repeat-buying component with a mixture of gamma distributions (Pareto/GGG) to allow for a varying degree of regularity across customers. Thereby, we abandon the historical

2 Specifically, the sum of k independent exponential variables follows an *Erlang-k* distribution, and its coefficient of variation decreases with increasing k: $CV = 1/\sqrt{k}$.
focus on the *count process* but fully emphasize accurately capturing the *timing process*. Although the model captures a wide variety of timing patterns, it does not induce any substantial additional costs in terms of data requirements. Other than the usual RF statistics, it requires only a single summary statistic for the historical ITTs, which can be provided easily while updating the RF variables.

Before we present the formal properties of the model in Section 3, we review prior contributions that suggest relaxing the restrictive ITT assumptions underlying conventional BTYD models and thereby draw conclusions for developing our model variant. We show that the proposed model generalizes the Pareto/NBD by accommodating regular timing patterns but also nests cases of random (i.e., exponentially distributed) and clumpy patterns. In Section 4, we explore the improved predictive performance of the Pareto/GGG using a like-for-like comparison with the Pareto/NBD across a broad range of simulated parameter settings, then investigate for which customer segments we should expect the greatest improvement in holdout predictions. Next, we empirically validate the forecasting performance of our model using multiple data sets. By accounting for regularity, our model outperforms both the Pareto/NBD and the heuristic benchmark suggested by Wübben and von Wangenheim (2008) in terms of out-of-sample, individual-level forecasting accuracy for future customer-level transactions. This is already the case for relatively mild ITT regularities, while the models perform on par for data sets without regularities. When ITTs feature regularity, the greatest improvements accrue in the important, high-frequency, low-recency customer segment. In such a situation, a standard NBD-type model results in overly optimistic predictions and erroneous recommendations with respect to customer prioritization. In Section 5, we contrast the properties of our model-based approach with the clumpiness metric C developed by Zhang et al. (2015) in greater detail. Finally, we discuss the merits and limitations of the proposed model for researchers and practitioners and outline some suggestions for further research.

2. Random, Regular, and Clumpy Interpurchase Timing

Since its introduction, the Pareto/NBD model has been extended in various ways, mostly by modifying the dropout process. A particularly noteworthy variation resulted in the *Betageometric/NBD model* (BG/NBD) by Fader, Hardie, and Lee (2005a), which adjusts the dropout story by restricting defection to repurchase incidents. The BG/NBD approach offers data-fitting capabilities similar to those of the *Pareto/NBD model*, but it is mathematically and computationally less demanding, which has helped disseminate this model class in real-world settings. In turn, Batislam et al. (2007) and Hoppe and Wagner (2007) each modify this variant by allowing for an additional dropout opportunity immediately after the initial purchase (MBG/NBD and CBG/NBD, respectively). In the model developed by Jerath et al. (2011), *periodic death opportunities* (PDO) serve
to decouple the discrete dropout opportunities from the purchase process. Bemmaor and Glady (2012) reintroduces the assumption of a continuously distributed dropout process but allows for a non-constant hazard rate (gamma/Gompertz/NBD). Further, other Pareto/NBD variants have succeeded in incorporating time-invariant covariates (Fader and Hardie 2007, Abe 2009). However, all of these models retain the assumptions of a Poisson purchase process (i.e., NBD). Considering that the dropout process is latent, whereas the purchase process is directly observable and offers more customer-level information, it seems appropriate to focus on the purchase process and model a more flexible distribution to adapt to a wider range of real-world timing patterns. This adaptation appears particularly necessary against the backdrop of our research motivation, namely, to gain a better understanding of the purchase process and thereby to also improve inferences concerning the non-observable activity status.

The idea of accounting for deviations from Poisson-like purchasing in repeat-buying models is not new in the marketing literature. Herniter (1971) was among the first to propose modeling ITTs using the Erlang-k family of distributions, which allows for various degrees of regularity in timing patterns (i.e., higher k, stronger regularity) but also contains the exponential distribution as a special case ($k = 1$). In addition, Chatfield and Goodhardt (1973) combined the Erlang-k with a gamma distribution to reflect the variation in the purchase rate across customers and termed the resulting model a condensed negative binomial distribution (CNBD). Both contributions also offered empirical support for regular purchase patterns of $k = 2$ for products such as aluminum foil, detergents, razor blades, and soaps. However, in their concluding remarks, Chatfield and Goodhardt (1973, p.834) worried that “the CNBD formulas are so much more complex that it is doubtful if the small improvements in fit justify the extra effort”. Furthermore, these authors focused on stationary settings in a repeat-buying context, whereas we attempt to leverage a better understanding of the timing process to improve inferences concerning the latent activity status. Further research on the characteristics of the CNBD appear in Schmittlein and Morrison (1983) and Morrison and Schmittlein (1988). Gupta (1991) present a framework capable of incorporating time-dependent covariates for estimating NBD as well as CNBD models; the empirical evidence in that article also suggests regular purchase patterns for the coffee category. Within this framework, Fader et al. (2004) build a dynamic changepoint model, in which changes in purchase frequency predict new product sales along the product cycle. In addition, Schweidel and Fader (2009) allow for a transition from an exponentially distributed to a more regular Erlang-2 timing pattern over a customer’s lifecycle. Finally, Wu and Chen (2000) combine the CNBD model with a non-stationary repeat-buying process and observe strong regularities in the tea category, with an estimate of $k = 5$.

It is possible to achieve greater flexibility for modeling ITT regularity by moving from Erlang-k to a gamma distribution, which contains the former as a special case, while its shape parameter is
no longer restricted to integer values. The shape parameter can be estimated at the customer level by calculating the coefficient of variation or maximum likelihood and is then aggregated across customers (Herniter 1971, Dunn et al. 1983, Wu and Chen 2000). However, this approach requires sufficient transactions made by a customer (usually 10 or more) and thus suffers in settings marked by low frequency. Wheat and Morrison (1990) propose an alternative estimation method that requires only two observed ITTs ($\Delta t_1, \Delta t_2$) per customer by assuming a common shape parameter k across all customers. The estimate for this shape parameter is given by:

$$\hat{k}_{\text{wheat}} = \frac{1 - 4 \cdot \text{var}(M)}{8 \cdot \text{var}(M)}$$

with $M := \frac{\Delta t_1}{\Delta t_1 + \Delta t_2}$, (1)

which serves an easy-to-compute dataset-level summary statistic and can be used as a quick diagnostic check for regularity within a customer base before running a more complex modeling approach, such as the Pareto/GGG presented in the next section. In addition to the above work, Allenby et al. (1999) present an even more flexible model that assumes that the ITT patterns follow a generalized gamma distribution, which contains the gamma, Weibull, lognormal, Erlang, and exponential distributions as special cases, and hence it accommodates a wide variety of timing patterns, including regular purchases. However, both shape parameters remain constant across customers in their model; thus, they only allow for a homogeneous regularity parameter in the customer base.

More recently, Zhang et al. (2013) introduce an entire class of C measures to calculate the degree of “clumpiness” at an individual level in time-discrete settings. The design of these measures has been guided by four requirements concerning their behavior. Among others, they are expected to take their maxima when events are tightly clustered and their minima in the case of constant ITTs. Thus, they effectively capture the level of non-randomness in event timings and also measure regularity, just with opposite signs. Nevertheless, as we will show in Section 5, to become reliable, these metrics also require a high number of observations at the individual level and therefore need to be used with care in low-frequency or high-churn scenarios. The generalization of the Pareto/NBD presented in the next section, the Pareto/GGG, is able to address both situations well, as it adaptively pools available information across customers and explicitly allows for churn to take place.

Before introducing this approach, we depict the range of timing patterns induced by assuming gamma-distributed ITTs. Figure 2 displays the probability density and multiple sampled timing patterns for three different values of the shape parameter ($k \in \{0.3, 1, 8\}$). To facilitate direct comparisons across settings, we also use k as a rate parameter, such that all result in the same expected ITT of one time unit. Obviously, for higher values of k, the density exhibits a narrower
shape, resulting in less variance in ITTs and thus more regular patterns. For smaller values of \(k \), we instead detect tight clusters of transactions along the timeline. As this brief illustration shows, the gamma distribution can capture regular \((k > 1)\), random \((k = 1)\), and clumpy \((k < 1)\) patterns; it generalizes the exponential and Erlang-k family of distributions and thus represents a good candidate for a flexible model of timing patterns in noncontractual settings with continuous timing.

3. Model Development

Because the Pareto/NBD model remains the work horse among BTYD models operating in continuous time (Wübben and von Wangenheim 2008), we selected it as the base for developing a more general model which can account for various timing patterns. Specifically, we replace the exponential with a gamma distribution to model a customer’s ITTs and let the shape parameter of that gamma distribution vary across customers. In so doing, we not only allow for heterogeneity in frequency and dropout but also in terms of regularity. Notice that other NBD-based models could be generalized in a similar way. Using a hierarchical Bayes setup, the model adaptively pools (the commonly sparse) individual-level information, and the degree of pooling is driven by the data (Rossi and Allenby 2003). Thus, a prior belief about a customer’s regularity gets updated in a Bayesian manner, according to the available customer-level information about variance in ITTs. The more transactions are available for a customer, the better we can draw inferences on that customer’s regularity.
3.1. Model Assumptions

Transaction Process: While the customer remains alive, his or her ITTs $\Delta t_j := t_j - t_{j-1}$ follow a gamma distribution, with shape parameter k and rate parameter $k\lambda$:

$$\Delta t_j \sim \text{Gamma}(k, k\lambda). \quad (A1)$$

The mean of the gamma distribution is shape/rate, and the coefficient of variation (CV) is $1/\sqrt{\text{shape}}$. The chosen parametrization therefore results in the same mean ITT as the Pareto/NBD, $1/\lambda$, which allows for a direct comparison of the parameter estimates of λ between the two models. Here, λ determines the frequency, and the shape parameter k determines the regularity of the transaction timings.

Dropout Process: A customer remains alive for an exponentially distributed lifetime τ:

$$\tau \sim \text{Exponential}(\mu). \quad (A2)$$

Heterogeneity across Customers: The individual-level parameters $\{k, \lambda, \mu\}$ follow gamma distributions across customers independently:

$$k \sim \text{Gamma}(t, \gamma). \quad (A3)$$

$$\lambda \sim \text{Gamma}(r, \alpha). \quad (A4)$$

$$\mu \sim \text{Gamma}(s, \beta). \quad (A5)$$

Considering these adapted assumptions for the transaction process, we refer to the new model variant as Pareto/GammaGammaGammaGamma, or Pareto/GGG, hereafter.

3.2. Parameter Estimation

To achieve the parameter estimation for the Pareto/GGG, we formulate a full hierarchical Bayesian model with hyperpriors for the heterogeneity parameters, then generate draws of the marginal posterior distributions using a *Markov chain Monte Carlo* (MCMC) sampling scheme. This comes with additional computational costs and implementation complexity, compared with the maximum likelihood method available for Pareto/NBD, but we simultaneously gain the benefits of (1) estimated marginal posterior distributions rather than point estimates, (2) individual-level parameter estimates, and thus (3) straightforward simulations of customer-level metrics that are of managerial interest.

Rossi and Allenby (2003) provided a blueprint for applying a full Bayes approach (in contrast to an empirical Bayes approach) to hierarchical models such as Pareto/NBD. Then Ma and Liu (2007) published a specific MCMC scheme, comprised of Gibbs sampling with slice sampling to
draw from the conditional distributions. Later Abe (2009) provided a significantly faster sampling scheme for the Pareto/NBD model by using data augmentation (Tanner and Wong 1987), thus expanding the parameter space with two latent variables: unobserved lifetime τ and activity status z. This approach effectively decouples the sampling of the transaction process from the dropout process and therefore is able to take advantage of simple Bayesian updating rules for the conjugate priors.3

However, for Pareto/GGG, the transaction process priors are no longer conjugate priors, so we must sample the conditional posteriors for the individual-level transaction parameters k and λ using MCMC for each Gibbs iteration and for each customer. The continued increases in computational power make even such brute-force simulation methods feasible and enable greater flexibility in model assumptions, as was also demonstrated by Abe’s (2009) Pareto/NBD variant.

As we show subsequently, the Pareto/GGG requires only one additional, easily maintained summary statistic of historic transaction timings: the sum over the logarithmic ITTs4. Therefore, the data requirements imposed by modeling gamma-distributed ITTs are not, in practice, any higher than those for Pareto/NBD, which requires (1) the number of past transactions x, (2) the timing of the most recent transaction t_x, and (3) the total observation time T since the customer was acquired. Computing these three statistics requires processing the customer’s full transaction history or their continuous updating whenever a new transaction is recorded. In either case, adding the sum of the logarithmic ITTs as an additional measure is straightforward to implement.

3.3. Key Expressions

We use f_{Γ} to denote the density and F_{Γ} to indicate the cumulative distribution function of the gamma distribution in this section.

P(alive): The probability that a customer is still alive at time T is derived in Appendix A, and results in the following equation:

$$P(\tau > T | k, \lambda, \mu, t_1, \ldots, t_x, T) = 1/ \left(1 + \int_0^T \left(1 - F_{\Gamma}(y - t_x | k, \lambda) \right) \mu e^{-\mu y} dy \right).$$

(2)

Individual-Level Likelihood: The likelihood of observing x intertransaction times Δt_j, and then having no further transaction occur until time T — or in case of churn, until time τ (i.e., $\Delta t_{x+1} > \min(T, \tau) - t_x$) — can be expressed as follows:

3Other studies using hierarchical Bayesian approaches using MCMC sampling to estimate the Pareto/NBD model or variations thereof include the contributions by Singh et al. (2009), Conoor (2010), or more recently Quintana and Marshall (2015) in a noncontractual setting, and the paper by Borle et al. (2008) in a contractual context.

4Note that one of the four clumpiness measures introduced by Zhang et al. (2013) relies on the same summary statistic, which again shows that the same underlying concept is being captured, just with opposite signs.
L(k, λ|t_1, ..., t_x, T, τ) = \left(\prod_{j=1}^{x} f_\Gamma(\Delta t_j|k, k\lambda) \right) \left(1 - F_\Gamma(\min(T, τ) - t_x|k, k\lambda) \right)
= \frac{(k\lambda)^x}{\Gamma(k)^x} e^{-k\lambda t_x} \left(\prod_{j=1}^{x} (\Delta t_j)^{k-1} \right) \left(1 - F_\Gamma(\min(T, τ) - t_x|k, k\lambda) \right). \tag{3}

Conditional Log-Posterior for k: It follows from Equations (3) and (A3) that

\[
\log \pi(k|t_1, ..., t_x, T, τ, \lambda, t, γ) \\
\propto \log \text{likelihood} + \log \text{prior} \\
\propto kx \log(\lambda) - x \log \Gamma(k) - k\lambda t_x + (k - 1) \sum_{j=1}^{x} \log \Delta t_j \\
+ \log(1 - F_\Gamma(\min(T, τ) - t_x|k, k\lambda)) + (t - 1) \log k - γk. \tag{4}
\]

Note that the conditional log-posterior for the regularity parameter k requires the sum over the logarithmic ITTs as an additional summary statistic.

Conditional Log-Posterior for λ: It follows from Equations (3) and (A4) that

\[
\log π(λ|t_1, ..., t_x, T, τ, k, r, α) \\
\propto \log \text{likelihood} + \log \text{prior} \\
\propto kx \log(λ) - k\lambda t_x + \log(1 - F_\Gamma(\min(T, τ) - t_x|k, k\lambda)) + (r - 1) \log λ - αλ. \tag{5}
\]

Probability Distribution of τ in Case of Churn: For sampling the lifetime of a customer who churns before T, we must consider the likelihood that no further transactions occur in (t_x, τ], such that the next ITT will be greater than τ - t_x. The probability distribution of τ - t_x thus can be specified up to a normalizing constant as follows:

\[
f(τ - t_x|k, λ, μ) \propto e^{-μ(τ-t_x)}(1 - F_\Gamma(τ - t_x|k, k\lambda)). \tag{6}
\]

3.4. MCMC Procedure

The sampling scheme to generate draws from the joint posterior distribution is a combination of Ma and Liu’s (2007) Gibbs sampler with slice sampling (Neal 2003) and Abe’s (2009) augmented parameter space.

1. Use separate gamma distributions as hyperpriors for t, γ, r, α, s, and β, and set the according shape and rate hyperparameters (t_1, t_2), (γ_1, γ_2), (r_1, r_2), (α_1, α_2), (s_1, s_2), and (β_1, β_2) to capture the prior belief on the heterogeneity parameters.

2. Set initial values for t, γ, r, α, s, and β, such as by using maximum likelihood estimates of Pareto/NBD.
3. Set initial values for \(\{k_i, \lambda_i, \mu_i, z_i, \tau_i\} \) for all customers.

4. For each customer \(i \),
 (a) Draw \(k_i \) by slice-sampling the conditional posterior in Equation (4),
 (b) Draw \(\lambda_i \) by slice-sampling the conditional posterior in Equation (5),
 (c) Draw \(\mu_i \sim \text{Gamma}(s + 1, \beta + \tau_i) \), with the recognition that the gamma distribution is the conjugate prior of the exponential distribution,
 (d) Draw \(z_i \sim \text{Bernoulli}(P(\text{alive})) \) with \(P(\text{alive}) \) calculated according to Equation (2),
 (e) Draw \(\tau_i \) conditional on status \(z_i \):
 i. If the customer is alive (\(z_i = 1 \)), then draw \(\tau_i \sim \text{Exponential}(\mu_i) \), left truncated to \([T_i, \infty)\).
 ii. If the customer has already churned before time \(T_i \) (\(z_i = 0 \)), then draw \(\tau_i - t_x \) by slice-sampling the probability density in Equation (6), truncated to \([0, T_i - t_x]\).

5. Draw the heterogeneity parameters, treating the individual-level parameter draws as data and the specified gamma hyperpriors as priors. Ma and Liu (2007) propose updating the rate and shape heterogeneity parameters separately, whereas we suggest using component-wise slice-sampling to draw them simultaneously, which reduces the strong auto-correlation of the MCMC chain.
 (a) Draw \(\pi(t, \gamma | \{k_i\}) \).
 (b) Draw \(\pi(r, \alpha | \{\lambda_i\}) \).
 (c) Draw \(\pi(s, \beta | \{\mu_i\}) \).

6. Repeat steps 4 and 5 until convergence is reached and sufficient samples have been drawn.

4. Performance Evaluation and Empirical Analysis

We benchmark the performance of the Pareto/GGG against the Pareto/NBD using the following evaluation strategy: First, we conduct an extensive simulation study to systematically investigate the role of ITT regularity in holdout-forecasting tasks across variations of our model’s assumptions. Second, we assess the empirical performance of the model using six real-world data sets on the purchasing of various product categories at e-commerce web sites, an online grocery retailer, and the donation records of a nonprofit organization.

4.1. Simulation Study

Our simulation study sought a better understanding of the benefits of incorporating regularity in a wide variety of purchase settings. For this purpose, we built on the simulation design suggested by Fader et al. (2005a), who uses three levels for each of the four Pareto/NBD heterogeneity parameters for creating synthetic cohorts. To ensure a reasonable size for the total number of simulated “worlds”, we chose only the two extreme values for each parameter but combined these \(2^4 = 16 \) settings with five distributions of regularity and two cohort sizes, resulting in a total full-factorial design of \(16 \times 5 \times 2 = 160 \) Pareto/GGG scenarios. The chosen parameter values are as
follows: $N \in \{1000, 4000\}$, $r \in \{0.25, 0.75\}$, $\alpha \in \{5, 15\}$, $s \in \{0.25, 0.75\}$, $\beta \in \{5, 15\}$, and $(t, \gamma) \in \{(1.6, 0.4), (5, 2.5), (6, 4), (8, 8), (17, 20)\}$. The resulting distributions for the regularity parameter k are displayed in Figure 3; they include a mix of customers with clumpy, random, and regular transaction timing. Based on these assumptions, we then generated transaction records for a calibration period and a holdout period of 52 weeks each. Similar to the simulation environment created by Fader et al. (2005a), the spanned parameter space covers a wide range of settings. The share of customers with no repeat transactions during the calibration period ($x = 0$) ranges from 22% to 91%; the share of frequent customers with $x \geq 10$ spans 0% to 22%; and the share of customers who are active during the holdout period ranges from 4% to 58%.

For each scenario, we performed parameter estimations using the MCMC sampler, with weakly informative hyperpriors. To ensure like-for-like comparisons between the Pareto/GGG and Pareto/NBD, we also performed parameter estimations for the latter using MCMC sampling. An efficient implementation of the Pareto/GGG and Pareto/NBD MCMC sampler is made available as part of the BTYDplus R package (R Core Team 2014, Eddelbuettel and François 2011) under an open-source license5. Further details on runtime and convergence diagnostics are reported in Appendix B.

To illustrate parameter recovery, Table 1 shows the results for five selected scenarios. Apparently, the Pareto/GGG MCMC sampler can recover the underlying data-generating parameters quite well, and it does so more effectively for the purchase process (t, γ, r, α) than for the unobservable

5 The authors wish to express their gratitude to Sandeep Conoor, who provided them with a working Fortran implementation of his MCMC sampler for estimating the Pareto/NBD. The work by Conoor (2010) proved to be very helpful for writing our own performance-tuned MCMC sampler in R.
Platzer and Reutterer: Timing regularity helps to better predict customer activity
Marketing Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Table 1 Recoverability of True Parameters for 5 Selected Scenarios with $N = 4000$

| Scenario | k_{q50} | γ_{q50} | τ_{q50} | α_{q50} | s_{q50} | β_{q50} | k_{q40} | k_{q50} | k_{q90} | ITT_{q50} | τ_{q50} | P(Alive)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>1.6</td>
<td>0.4</td>
<td>0.25</td>
<td>5.0</td>
<td>0.25</td>
<td>5.0</td>
<td>0.84</td>
<td>3.21</td>
<td>8.22</td>
<td>91</td>
<td>75</td>
<td>54%</td>
</tr>
<tr>
<td>PGGG</td>
<td>1.9</td>
<td>0.5</td>
<td>0.22</td>
<td>4.4</td>
<td>0.31</td>
<td>10.9</td>
<td>0.94</td>
<td>3.11</td>
<td>7.48</td>
<td>129</td>
<td>83</td>
<td>57%</td>
</tr>
<tr>
<td>PNBD</td>
<td>.96</td>
<td>0.18</td>
<td>4.3</td>
<td>0.27</td>
<td>14.8</td>
<td>.96</td>
<td>2.05</td>
<td>183</td>
<td>.205</td>
<td>205</td>
<td>183</td>
<td>67%</td>
</tr>
<tr>
<td>True</td>
<td>5.0</td>
<td>2.5</td>
<td>0.75</td>
<td>5.0</td>
<td>0.75</td>
<td>5.0</td>
<td>0.97</td>
<td>1.87</td>
<td>3.20</td>
<td>9 8</td>
<td>91 75</td>
<td>54%</td>
</tr>
<tr>
<td>PGGG</td>
<td>4.8</td>
<td>2.1</td>
<td>0.65</td>
<td>4.5</td>
<td>0.83</td>
<td>6.7</td>
<td>0.95</td>
<td>1.84</td>
<td>3.19</td>
<td>10 8</td>
<td>9 75</td>
<td>54%</td>
</tr>
<tr>
<td>PNBD</td>
<td>.96</td>
<td>0.54</td>
<td>4.5</td>
<td>0.79</td>
<td>7.6</td>
<td>.96</td>
<td>12</td>
<td>11</td>
<td>20%</td>
<td>205</td>
<td>183</td>
<td>67%</td>
</tr>
<tr>
<td>True</td>
<td>6.0</td>
<td>4.0</td>
<td>0.25</td>
<td>5.0</td>
<td>0.25</td>
<td>15.0</td>
<td>0.79</td>
<td>1.42</td>
<td>2.32</td>
<td>82 224</td>
<td>96 229</td>
<td>73%</td>
</tr>
<tr>
<td>PGGG</td>
<td>5.5</td>
<td>3.6</td>
<td>0.23</td>
<td>4.4</td>
<td>0.33</td>
<td>31.5</td>
<td>0.77</td>
<td>1.43</td>
<td>2.39</td>
<td>96 229</td>
<td>96 229</td>
<td>73%</td>
</tr>
<tr>
<td>PNBD</td>
<td>.96</td>
<td>0.21</td>
<td>4.3</td>
<td>0.35</td>
<td>53.4</td>
<td>.96</td>
<td>11</td>
<td>11</td>
<td>20%</td>
<td>111 296</td>
<td>111 296</td>
<td>78%</td>
</tr>
<tr>
<td>True</td>
<td>8.0</td>
<td>8.0</td>
<td>0.25</td>
<td>5.0</td>
<td>0.75</td>
<td>15.0</td>
<td>0.58</td>
<td>0.96</td>
<td>1.47</td>
<td>71 23</td>
<td>23 33%</td>
<td>33%</td>
</tr>
<tr>
<td>PGGG</td>
<td>7.3</td>
<td>7.4</td>
<td>0.24</td>
<td>4.6</td>
<td>0.72</td>
<td>13.8</td>
<td>0.55</td>
<td>0.94</td>
<td>1.47</td>
<td>71 22</td>
<td>22 32%</td>
<td>32%</td>
</tr>
<tr>
<td>PNBD</td>
<td>.96</td>
<td>0.30</td>
<td>4.7</td>
<td>0.54</td>
<td>5.3</td>
<td>.96</td>
<td>44</td>
<td>14</td>
<td>28%</td>
<td>44 14</td>
<td>44 28%</td>
<td>28%</td>
</tr>
<tr>
<td>True</td>
<td>17.0</td>
<td>20.0</td>
<td>0.75</td>
<td>15.0</td>
<td>0.75</td>
<td>15.0</td>
<td>0.60</td>
<td>0.83</td>
<td>1.12</td>
<td>21 23</td>
<td>21 33%</td>
<td>33%</td>
</tr>
<tr>
<td>PGGG</td>
<td>14.4</td>
<td>17.1</td>
<td>0.72</td>
<td>14.9</td>
<td>0.80</td>
<td>17.1</td>
<td>0.58</td>
<td>0.83</td>
<td>1.15</td>
<td>22 24</td>
<td>22 33%</td>
<td>33%</td>
</tr>
<tr>
<td>PNBD</td>
<td>.96</td>
<td>0.94</td>
<td>15.3</td>
<td>0.65</td>
<td>8.4</td>
<td>.96</td>
<td>17</td>
<td>15</td>
<td>27%</td>
<td>17 15</td>
<td>17 27%</td>
<td>27%</td>
</tr>
</tbody>
</table>

lifetime process (s, β). A further analysis of all 160 scenarios confirms that Pareto/NBD tends to overestimate lifetime and ITTs in the presence of regularity. This error likely results because the Pareto/NBD model interprets a long transaction hiatus observed for a regular customer rather as an exceptionally long ITT, as it allows for greater variance in waiting times than would be the case when taking regularity into account.

Next, we assess the impact of incorporating regularity into the model by examining the lift in predictive accuracy for all 160 simulated scenarios when we move from Pareto/NBD to Pareto/GGG. Forecasting accuracy is compared in terms of the customer-level mean absolute error (MAE) of the predicted number of transactions during the holdout period6; we define a relative lift as $1 - \text{MAE}_{\text{PGGG}}/\text{MAE}_{\text{PNBD}}$ and an absolute lift as $\text{MAE}_{\text{PNBD}} - \text{MAE}_{\text{PGGG}}$. Thus, the higher the lift measure, the higher the (relative) gain in predictive accuracy. In general, the Pareto/GGG performs well in these forecasting tasks. In cases with predominantly random or clumpy ITT patterns, the models generally perform on par. However, for scenarios with mildly regular timing patterns, the Pareto/GGG already consistently improves forecasting accuracy across the board, with larger improvements for greater degrees of regularity (up to +20% relative lift). As expected, the stronger the regularity within a cohort, the stronger the lift, and this result holds across all other parameter configurations. A complete summary of the results of the simulation study for all 160 synthetic scenarios is included in Appendix B.

To obtain a more thorough understanding of the particular customer groups within a cohort for which the largest gains in predictive accuracy can be achieved when accounting for regularity, we combined the forecasts for all 400,000 customers from the 160 simulated worlds and then divided

6The MAE measure is frequently used for time-series data. In the context of customer-base analysis, see the recent contribution by Schwartz et al. (2014) for a justification for choosing MAE as a model selection criterion.
Table 2 Impact of Incorporating Regularity by Customer Segment

<table>
<thead>
<tr>
<th>Customer Segment</th>
<th>Lift</th>
<th>MAE</th>
<th>Holdout mean(x^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative</td>
<td>absolute</td>
<td>PGGG</td>
</tr>
<tr>
<td>Zero Zero</td>
<td>+0%</td>
<td>-0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>Low Low</td>
<td>+2%</td>
<td>-0.02</td>
<td>0.87</td>
</tr>
<tr>
<td>None High</td>
<td>-0%</td>
<td>-0.00</td>
<td>2.64</td>
</tr>
<tr>
<td>$k < 1.5$ High</td>
<td>+1%</td>
<td>+0.01</td>
<td>1.69</td>
</tr>
<tr>
<td>High High</td>
<td>+0%</td>
<td>+0.00</td>
<td>4.83</td>
</tr>
<tr>
<td>all all</td>
<td>-0%</td>
<td>+0.00</td>
<td>0.87</td>
</tr>
<tr>
<td>Zero Zero</td>
<td>+11%</td>
<td>-0.02</td>
<td>0.14</td>
</tr>
<tr>
<td>Low Low</td>
<td>+9%</td>
<td>-0.08</td>
<td>0.83</td>
</tr>
<tr>
<td>Low High</td>
<td>+15%</td>
<td>-0.34</td>
<td>1.97</td>
</tr>
<tr>
<td>High Low</td>
<td>+1%</td>
<td>+0.02</td>
<td>1.28</td>
</tr>
<tr>
<td>High High</td>
<td>+0%</td>
<td>+0.06</td>
<td>3.81</td>
</tr>
<tr>
<td>all all</td>
<td>+6%</td>
<td>-0.05</td>
<td>0.69</td>
</tr>
<tr>
<td>Zero Zero</td>
<td>+16%</td>
<td>-0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>High Low</td>
<td>+18%</td>
<td>-0.16</td>
<td>0.73</td>
</tr>
<tr>
<td>High High</td>
<td>+41%</td>
<td>-0.94</td>
<td>1.33</td>
</tr>
<tr>
<td>all all</td>
<td>+8%</td>
<td>-0.04</td>
<td>0.97</td>
</tr>
<tr>
<td>High High</td>
<td>+7%</td>
<td>-0.25</td>
<td>3.09</td>
</tr>
<tr>
<td>all all</td>
<td>+15%</td>
<td>-0.10</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Figure 4 Relative Lift in MAE vs. Regularity k

them into distinct segments according to their recency, frequency, and (true underlying) regularity. In terms of frequency, we distinguish groups of customers with 4 or more transactions (high), 1 to 3 transactions (low), and no repeat transactions (zero). For recency, the distinction indicates whether a customer conducted the latest transaction less than 8 weeks ago, $t_x > 42$ (high), or more than 8 weeks ago (low). Table 2 reports the relative and absolute lift in MAE both for Pareto/NBD and Pareto/GGG, along with the average number of transactions during the holdout period for that segment. We also rank our 400,000 synthetic customers according to their regularity, divide them
into 10 equally sized groups, and plot their corresponding relative lift in MAE against their mean regularity in Figure 4. Several important findings emerge from inspecting Table 2 and Figure 4:

- The stronger the regularity, the greater the lift in the predictive accuracy of the Pareto/GGG compared with the Pareto/NBD forecasts.
- For customers with random \((k \approx 1)\) or even clumpy \((k < 1)\) purchase patterns, the Pareto/GGG offers predictions that are generally on par with those of the Pareto/NBD.
- The lift for customers purchasing at high frequencies is greater than for customers with lower purchase frequencies, likely because Pareto/GGG detects an individual’s degree of regularity more easily when more transactions are observed in the past. However, we find a lift even for customers with few or zero repurchase transactions. In such cases, the model leverages the estimated heterogeneity of regularity to form a prior belief about each person’s regularity.
- The lift for customers with a longer purchase hiatus since the last observed purchase (i.e., the low recency group) is greater than that for those who have been active recently. It seems (and we will subsequently confirm this) that the presence of regularity particularly facilitates distinguishing between active and inactive customers, if their next transaction is overdue. While this finding makes intuitive sense, traditional NBD-type models fail to take advantage of it. If the timing patterns are fairly erratic, this becomes relatively inconsequential. However, in a world with increasingly regular purchase timing, the Pareto/NBD no longer provides good predictions and is clearly outperformed by the much more flexible Pareto/GGG.
- The greatest lift emerges for the group of customers who formerly purchased very frequently in the past but have not been active more recently. Although usually a relatively small segment, it deserves particular attention by managers because these valuable customers are currently at risk of being lost. Accounting for regularity helps to remove some of the ambiguity regarding their future behavior.
- Finally, note that for the high-frequency, low-recency segment, the mean number of transactions during the holdout period \(x^*\) is significantly lower for regular than for random customers (2.31 vs. 3.49; see Table 2). A purely RF-based model would not be able to capture such a pattern. These findings suggest refining the observation of (Zhang et al. 2015, p. 206) that “a buy-till-you-die story performs well for nonclumpy customers, but not for clumpy ones”. While the clumpiness phenomenon might indeed be better accommodated in a modeling framework that allows for a more complex non-stationary repeat-buying behavior, we advocate replacing the dichotomy of clumpy vs. nonclumpy with the understanding that timing patterns range along a continuum between clumpy and regular (with improved predictions for the latter when adopting the Pareto/GGG).

In noncontractual settings, the expected number of future transactions depends largely on the assessment of a customer’s latent status. The BTYD model class assumes that a customer who
has defected is “lost for good” and will not make any further transactions in the future. To better understand the previous discussion on the varying impact of regularity for predicting future transactions (Table 2), a closer examination of the functional shape of $P(\text{alive})$ (see Section 3.3) and its interplay with recency, frequency, and regularity is helpful. Figure 5 displays the dependence of $P(\text{alive})$ on observed recency for two levels of frequency ($\lambda \in \{\frac{1}{6}, \frac{1}{26}\}$), for various degrees of ITT regularity ($k \in \{0.5, 1, 2, 4, 8, \infty\}$), and for a hypothetical customer with a mean lifetime of 52 weeks ($\mu = \frac{1}{52}$). The thick solid curve ($k = 1$) displays the corresponding functional shape of a Poisson purchase process, paired with an exponentially distributed lifetime (i.e., Pareto/NBD). The thin solid line ($k = \infty$) instead shows the extreme case of equally spaced transaction timings. The dotted line represents a clumpy customer, and the three dashed lines represent various degrees of regularity. A closer inspection of Figure 5 reveals that the deviation from Pareto/NBD depends largely on whether the latest transaction hiatus $T - t_x$ is greater or smaller than the expected ITT. If the transaction is overdue (i.e., $T - t_x > \text{mean(itt)}$), $P(\text{alive})$ declines for regular customers, and the magnitude of this shift depends on the strength of the regularity.

Our motivating example in Figure 1 reflects this finding: It indicates the timing patterns of customers A and B with same recency and frequency but different degrees of regularity. Figure 5a also indicates their approximate positions on the corresponding $P(\text{alive})$ curves. Their observed purchase hiatus of 14 weeks yields a 44% probability of being alive for customer A with random purchase occurrences; it is close to 0% for regular customer B. For the border case with deterministic timing patterns, $P(\text{alive})$ falls to zero immediately after the (constant) ITT has elapsed without activity. In the case of clumpy patterns, with strongly varying ITTs, the effect moves in the other direction, resulting in greater uncertainty regarding the latent activity state of the customer. This is exactly reflected by the findings of Zhang et al. (2015) of larger prediction errors for clumpy...
customers using a BTYD model (in their case, the BG/BB by Fader et al. (2010)). For customers who have recently been active (again, in relation to their expected ITT), as depicted to the right of the curves’ inflection points, we find only marginal differences. Comparing Figures 5a and 5b further supports our previous finding from the simulation study that the largest gain in predictive accuracy should be expected for customers with high frequency and low recency because, for these segments, regularity allows us to remove some of the ambiguity concerning the customer’s status.

In sum, our simulation study shows that the presence of regularity allows for better predictability. Thus, replacing the NBD- with the more flexible GGG-type transaction model is particularly advisable for data sets exhibiting regular timing patterns.

4.2. Empirical Application of the Pareto/GGG Model

We now empirically examine the importance of incorporating ITT regularity into stochastic models, using six data sets that represent various settings.

- **CDNOW**: 2,357 customers of an online CD store (CDNOW) who were acquired in the first quarter of 1997 and then observed over 1.5 years. This canonical data set has been studied and benchmarked extensively in the marketing literature (Fader and Hardie 2001, Fader et al. 2005a,b, Batislam et al. 2007, Wübben and von Wangenheim 2008, Abe 2009, Jerath et al. 2011, Bemmaor and Glady 2012, Zhang et al. 2015).

- **Apparel & Accessories**: 831 customers of an online apparel and accessories retailer (www.m18.com) who were acquired in April 2009 and observed over the course of 1 year. This data set came from Zhang et al. (2015), who kindly provided us with access to their data.

- **Donations**: 21,166 donors to a non-profit organization who were acquired in the first half of 2002 and observed over 4.5 years. The data set was provided by the Direct Marketing Educational Foundation (DMEF; see also Malthouse (2009), Bemmaor and Glady (2012), Schweidel and Knox (2013)).

- **Groceries**: These data came from an online retailer offering a broad range of grocery categories. The total observation period spans 4 years. Because customers’ acquisition date was not part of this data set, we constructed a quasi-cohort by limiting the analysis to the 1,525 customers who purchased in the first quarter of 2006 but not at all in the preceding 2 years. These purchase data are available at the product category level, which allows us to study purchase patterns by category.

- **Dietary Supplements and Office Supplies**: Two additional data sets come from an anonymous e-commerce service provider, each consisting of 35 weeks of purchase records for 1,000 randomly sampled customers.

Batislam et al. (2007) use this approach by left-filtering a grocery retail customer base, with the requirement that it provide 11 months of initial inactivity.
Figure 6 Sampled Timing Patterns and Histograms of Transaction Counts

(a) CDNOW

(b) Apparel & Accessories

(c) Donations

(d) Groceries

(e) Dietary Supplements

(f) Office Supply
All data sets contain the complete transaction records, including exact dates. Repeated transactions by a customer on a given day are treated as a single transaction. Without loss of generality, the chosen unit of time for our analysis is one week, and hence we provide the reported lifetime and ITT estimates in weeks. Figure 6 provides an overview of all six data sets by displaying the timing patterns of 40 randomly sampled customers, plus the histogram of transaction counts divided by calibration and holdout period. The displayed timing patterns reveal the sparseness of the available customer-level information, which requires us to pool data across customers. Furthermore, we can visually detect the varying degrees of regularity across not only the data sets but also the frequent customers in the databases. We seek to quantify this regularity and its heterogeneity by fitting the Pareto/GGG model.

For each data set, we fit both the Pareto/GGG and Pareto/NBD model using MCMC sampling, with the same settings as in the simulation study: 4 chains with 8,000 samples, of which the initial 2,000 are the burn-in sample. For the donations data set, we increased the samples to 30,000 because of the high autocorrelation in the draws for the lifetime parameters s and β.

A summary overview of the resulting posterior distributions for the model parameters is given in Table 3; the ranges of the respective posterior estimates for regularity are depicted in Figure 7. For the CDNOW data set, the regularity parameter k varies narrowly around 1, which confirms the validity of assuming a Poisson purchase process for this specific customer base. The estimates for the remaining Pareto/GGG parameters closely match those for Pareto/NBD, and both models result in similar fit and predictions. For the Apparel & Accessories retailer, the estimates for k also exhibit little variation, although the timing patterns appear rather irregular ($k_{50} = 0.85$). For the

Table 3 Selected Quantiles of the Posterior Distributions for Pareto/GGG and Pareto/NBD Parameters

<table>
<thead>
<tr>
<th></th>
<th>$\tau_{0.50}$</th>
<th>$q_{0.50}$</th>
<th>$r_{0.50}$</th>
<th>$q_{0.50}$</th>
<th>$s_{0.50}$</th>
<th>$\beta_{0.50}$</th>
<th>$k_{0.50}$</th>
<th>$k_{0.90}$</th>
<th>$\text{ITT}_{0.50}$</th>
<th>$\tau_{0.50}$</th>
<th>$\text{P}(\text{alive})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDNOW</td>
<td></td>
</tr>
<tr>
<td>PGGG</td>
<td>40.4</td>
<td>38.9</td>
<td>0.5</td>
<td>10.3</td>
<td>0.6</td>
<td>11.5</td>
<td>0.86</td>
<td>1.04</td>
<td>1.29</td>
<td>26.2</td>
<td>24.1</td>
</tr>
<tr>
<td>PNBD</td>
<td>.</td>
<td>.</td>
<td>0.6</td>
<td>10.6</td>
<td>0.5</td>
<td>8.3</td>
<td>.</td>
<td>.</td>
<td>25.8</td>
<td>25.2</td>
<td>45%</td>
</tr>
<tr>
<td>Apparel & Accessories</td>
<td></td>
</tr>
<tr>
<td>PGGG</td>
<td>43.9</td>
<td>51.0</td>
<td>0.5</td>
<td>7.5</td>
<td>0.6</td>
<td>19.1</td>
<td>0.69</td>
<td>0.85</td>
<td>1.03</td>
<td>18.0</td>
<td>42.1</td>
</tr>
<tr>
<td>PNBD</td>
<td>.</td>
<td>.</td>
<td>0.6</td>
<td>7.4</td>
<td>0.6</td>
<td>15.0</td>
<td>.</td>
<td>.</td>
<td>16.1</td>
<td>32.6</td>
<td>47%</td>
</tr>
<tr>
<td>Donations</td>
<td></td>
</tr>
<tr>
<td>PGGG</td>
<td>4.2</td>
<td>1.4</td>
<td>1.0</td>
<td>77.0</td>
<td>8.2</td>
<td>1565</td>
<td>1.33</td>
<td>2.70</td>
<td>4.88</td>
<td>96.4</td>
<td>136.4</td>
</tr>
<tr>
<td>PNBD</td>
<td>.</td>
<td>.</td>
<td>0.6</td>
<td>77.4</td>
<td>2.0</td>
<td>1432</td>
<td>.</td>
<td>.</td>
<td>158.3</td>
<td>628.7</td>
<td>81%</td>
</tr>
<tr>
<td>Groceries</td>
<td></td>
</tr>
<tr>
<td>PGGG</td>
<td>1.7</td>
<td>0.4</td>
<td>0.9</td>
<td>5.1</td>
<td>0.4</td>
<td>4.5</td>
<td>1.02</td>
<td>3.47</td>
<td>9.24</td>
<td>7.1</td>
<td>17.7</td>
</tr>
<tr>
<td>PNBD</td>
<td>.</td>
<td>.</td>
<td>0.8</td>
<td>5.7</td>
<td>0.4</td>
<td>5.5</td>
<td>.</td>
<td>.</td>
<td>8.0</td>
<td>28.7</td>
<td>43%</td>
</tr>
<tr>
<td>Dietary Supplements</td>
<td></td>
</tr>
<tr>
<td>PGGG</td>
<td>5.8</td>
<td>3.0</td>
<td>0.7</td>
<td>17.7</td>
<td>0.5</td>
<td>5.5</td>
<td>1.00</td>
<td>1.78</td>
<td>3.20</td>
<td>38.9</td>
<td>19.1</td>
</tr>
<tr>
<td>PNBD</td>
<td>.</td>
<td>.</td>
<td>0.5</td>
<td>20.5</td>
<td>0.3</td>
<td>12.0</td>
<td>.</td>
<td>.</td>
<td>70.5</td>
<td>99.1</td>
<td>71%</td>
</tr>
<tr>
<td>Office Supply</td>
<td></td>
</tr>
<tr>
<td>PGGG</td>
<td>4.8</td>
<td>2.1</td>
<td>0.3</td>
<td>4.3</td>
<td>0.4</td>
<td>6.2</td>
<td>1.07</td>
<td>2.08</td>
<td>3.66</td>
<td>48.8</td>
<td>34.6</td>
</tr>
<tr>
<td>PNBD</td>
<td>.</td>
<td>.</td>
<td>0.2</td>
<td>4.5</td>
<td>0.3</td>
<td>20.7</td>
<td>.</td>
<td>.</td>
<td>95.6</td>
<td>159.5</td>
<td>80%</td>
</tr>
</tbody>
</table>

Notice that the chosen unit of time is an arbitrary definition for continuous-time BTYD models. It is only reflected in the scale parameters of the purchase and dropout models but does not impact the predictions themselves.
remaining four data sets, we detected varying degrees of regularity, with a median k ranging from 1.78 for Dietary Supplements to 3.47 for the grocery retailer (see Table 3). However, as can also be seen from Figure 7, the individual-level estimates of the regularity parameter k vary significantly within these customer bases. In the Grocery data set, for example, close to 10% of customers are estimated to purchase with timing patterns that are more irregular than random ($k < 1$), and another 10% exhibit strong regular patterns with k larger than 9.24 (see the corresponding quantiles for k_{q10} and k_{q90} in Table 3).

We also investigated how many of the individual-level marginal posterior densities for which we have 90% confidence that the timing patterns are more regular than random (i.e., $P(k > 1) > 0.9$). While for the CDNOW and the Apparel & Accessories data sets, there were no such customers, the share of customers who satisfy this condition is 95% for the Donations, 72% for the Groceries, 58% for the Dietary Supplements, and 80% for the Office Supply data set. This suggests that regularity is a widely prevalent phenomenon at least for some of the empirical data we explored and for substantial fractions of customers within these data sets. Our observation is perfectly consistent with those from the related literature review in section 2 and with the findings by Zhang et al. (2015), who report the presence of clumpy timing patterns to be particularly present in online visitations and to a far lesser extent for repeated purchases. It is an interesting research subject to study whether these findings also hold for a broader set of empirical settings. Further, Table 3 shows that for data sets with mainly regular patterns, the Pareto/NBD results in significantly higher estimates for lifetime τ and thus $P(\text{alive})$ compared to Pareto/GGG. This finding accords with those from the simulation study, which diagnosed a systematic bias for the Pareto/NBD in the presence of regularity.
Table 4: Impact of Incorporating Regularity by Data Set

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Lift</th>
<th>Mean Absolute Error</th>
<th>Holdout</th>
<th>(\hat{k}_{\text{wheat}})</th>
<th>(k_{q50})</th>
<th>(%) relative</th>
<th>(\hat{})</th>
<th>PGGG</th>
<th>PNBD</th>
<th>Heuristic mean((x^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDNOW</td>
<td>1.0</td>
<td>1.0</td>
<td>+2%</td>
<td>+0.02</td>
<td>0.76</td>
<td>0.77</td>
<td>1.02</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparel & Accessories</td>
<td>0.6</td>
<td>0.8</td>
<td>-2%</td>
<td>-0.01</td>
<td>0.44</td>
<td>0.43</td>
<td>0.56</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donations</td>
<td>2.2</td>
<td>2.7</td>
<td>+16%</td>
<td>+0.06</td>
<td>0.29</td>
<td>0.35</td>
<td>0.34</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groceries</td>
<td>2.5</td>
<td>3.4</td>
<td>+8%</td>
<td>+0.13</td>
<td>1.39</td>
<td>1.52</td>
<td>2.57</td>
<td>2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary Supplements</td>
<td>2.0</td>
<td>1.8</td>
<td>+5%</td>
<td>+0.01</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Supply</td>
<td>1.8</td>
<td>2.1</td>
<td>+4%</td>
<td>+0.01</td>
<td>0.28</td>
<td>0.30</td>
<td>0.30</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corresponding to the simulation study, we also assess forecasting accuracy using the MAE of the predicted number of transactions during the holdout period and the comparative lift when we incorporate regularity. In addition, we provide the MAE for a simple heuristic forecast following a method suggested by Wübben and von Wangenheim (2008). Table 4 reports the results for all six empirical data sets, which conform to those of the simulation study: The stronger the ITT regularity, the greater the lift in predictive accuracy, whereas for cases with predominantly random purchase occurrence, the models perform equally well. Note, by taking regularity into account, the probabilistic model outperforms the heuristic in all six cases. Next to the median of the posterior for the Pareto/GGG regularity parameter \(k \), Table 4 also reports the Wheat and Morrison’s (1990) summary statistic calculated according to Equation 1. Except for the Groceries data set, which is characterized by a considerable degree of heterogeneity, \(\hat{k}_{\text{wheat}} \) approximates the regularity estimated by the Pareto/GGG fairly well. Given our empirical findings and the diagnostic power of the Wheat and Morrison (1990) summary statistic, we expect that customer-base analysts would benefit from the improved performance of the Pareto/GGG relative to the Pareto/NBD when \(\hat{k}_{\text{wheat}} \) is estimated to be approximately 1.5 or higher. Note, however, that this is a dataset-level statistic and ignores any potential heterogeneity across individual customers.

To illustrate the changes in the individual-level estimates when we account for regularity, we inspect three selected customers from the Grocery data set in detail. Figure 8 displays the timing patterns during the calibration and holdout periods, together with their corresponding Pareto/GGG and Pareto/NBD parameter estimates. Customer (a) engaged in four rather regularly spaced transactions during the calibration period but was not active in the last months of 2006 (the end of the calibration period). The Pareto/GGG estimates a strong degree of regularity (\(k_{q50} = 6.1 \)) for this customer and assigns a probability of only 56% that this customer will purchase again, compared with the significantly higher probability of 77% according to the Pareto/NBD model. Notice that the posterior probability density for the next transaction arrival shows a steep decline, implying that the next purchase event is overdue. To marketing managers, these are clear signals that the customer (rightly) is at risk of being lost and that appropriate marketing actions are called for.
The Pareto/GGG performs substantially better at identifying this than does the Pareto/NBD, for which the long transaction hiatus is not as strong an indicator of defection. Customer (b) exhibits similarly strong regularity but has remained active recently. Due to the recent transaction, \(P(\text{alive}) \) is (correctly) assessed equally high by the two models. However, the posterior probability density estimated by the Pareto/GGG points to an expected short inactivity period, after which transactions are expected to fall in a rather narrow bandwidth. Customer (c) undertook five rather irregularly spaced transactions in 2006, resulting in an estimate of \(k_{q50} = 0.9 \), which further demonstrates the variety of timing patterns that can appear in one and the same customer cohort. Due to the clumpy ITT pattern, \(P(\text{alive}) \) is also slightly elevated when it is taken into consideration. In sum, these findings reinforce the previously discussed model behavior, as depicted in Figure 5. Apparently, the clumpy case is difficult to predict for both models, and the Pareto/NBD assumptions appear to be not particularly costly relative to the Pareto/GGG.

To conclude our empirical application, we exploit the shopping basket data at the product category level in the Grocery data set to provide some further insights into which categories exhibit stronger regularities than others. For each of the 143 product categories, we construct quasi-cohorts of customers who did not purchase in that category in 2004 and 2005 but did so in the first half of 2006. Using these cohorts, we then fit a Pareto/GGG model using all of 2006 as a calibration period, obtaining estimated distributions for \(k \) in each category. Among the most regularly bought categories, we find perishable food categories such as salad (\(k_{q50} = 7.7 \)) and fresh cheese (\(k_{q50} = 6.0 \)), as well as packaged, regularly consumed goods, such as washing detergents (\(k_{q50} = 6.0 \)), fabric conditioners (\(k_{q50} = 5.0 \)), aluminum foil (\(k_{q50} = 4.7 \)), ground coffee (\(k_{q50} = 4.2 \)), and toilet paper (\(k_{q50} = 3.4 \)). The less regular categories still exhibit median \(k \) values greater than 1.5, as exemplified
by categories such as pantyhose \((k_{q50} = 1.5)\), spices \((k_{q50} = 1.9)\), and flour \((k_{q50} = 2.0)\). A benchmark of the Pareto/GGG against the Pareto/NBD further showed that for 140 of the 143 available categories, we increased predictive accuracy by accounting for observed regularity (the detailed results are available on request). As our findings suggest, ITT regularity generally translates into lower prediction errors. Thus, even for customers exhibiting considerable uncertainty in their future purchase behavior at the firm-level, multi-category firms such as the grocery retailer in the above example could greatly benefit from leveraging information on category-level regularities in their overall assessment of customer activities.

5. Relationship Between the Regularity Parameter \(k\) and the Clumpiness Metric \(C\)

Zhang et al. (2013) introduce a class of measures to capture clumpiness in incidence data. A subsequent contribution by Zhang et al. (2015) demonstrates the application of these measures to customer-base analysis using a specific \(C\) metric (i.e., the \(H_p\) variant) for a variety of purchase (purchase-\(C\)) and online visit (visit-\(C\)) patterns. The main empirical findings related to our research are that (1) clumpiness is a prevalent phenomenon, but mainly in the context of online visits and digital media consumption, (2) the inclusion of the \(C\) metric improves the data-fitting capability of RFM-based regression models of customers’ future (i.e., out-of-sample) activity, and (3) clumpy customers tend to be more active than regular ones in future periods\(^9\). Our presented research supports these findings, provides a link to the theoretical framework underlying the well-established class of BTYD models and thus contributes to improving our understanding of them, and develops a predictive model capable of extrapolating beyond the calibration period.

To establish the relationship between Zhang et al.’s (2015) \(C\) metric and the shape parameter \(k\) of the gamma-timing model of the Pareto/GGG, we conducted another simulation study. For various values of \(k\), we generated 10,000 Gamma\((k, k\lambda)\) timing patterns with \(n = 6\) and \(n = 12\) events each and calculated their \(H_p\) metric accordingly. The parameter \(\lambda\) is chosen sufficiently small to avoid zero-length ITTs when converting to discrete time units. The solid black curves in Figure 9 visualize the median over the \(H_p\) samples and reveal a strictly monotonous relationship between \(C\) and \(k\): The higher \(k\) is and thus the less variation we have in the ITTs, the lower the \(C\)-measure will be. Thus, despite being designed by the authors to measure clumpiness, the metric \(C\) also captures the degree of regularity.

Figure 9 further shows, for increments of \(k\), the variation in the measure \(C\) as vertical lines, with the sampled 5% and 95% quantiles indicated by whiskers. Comparing Figure 9 (a) with (b) also demonstrates that the more transactions we observe per customer, the more confident we can be

\(^9\) Note the positive sign of the regression coefficient of purchase-\(C\) in Table 4 reported by Zhang et al. (2015).
regarding the degree of clumpiness or regularity, respectively. In both graphs, there is significant overlap between the sampled C values across different timing patterns, but this is particularly pronounced for a smaller number of transactions. Furthermore, we extend the whiskers horizontally for the case of a simulated Poisson process (i.e., $k = 1$) by dotted lines, as these boundaries serve as the rejection regions for detecting clumpiness as described in Zhang et al. (2013). We find that only in cases of very strong clumpiness or strong regularity (marked by the whiskers in bold), the C measure is able to correctly reject the null hypothesis of randomly distributed events for more than half of the customers. Therefore, in settings characterized by customers with a small number of events (e.g., $n < 10$) during the observation period, analysts should be cautious when calculating the C measure, as it bears a significant amount of uncertainty. The proposed Pareto/GGG addresses this problem in a Bayesian manner by first forming a prior belief regarding the timing patterns based on all customers and subsequently gradually updating this belief with each additional transaction at the customer level.

Another potential shortcoming of the C measure is its insensitivity in distinguishing between clumpy interevent timing and latent defection or churn. Any defected customer with a prolonged phase of inactivity at the end of the observation period will be biased towards clumpiness. This can also be seen from the evolution of the C measure for the third sample customer in Figure 2 of Zhang et al. (2013). When simulating an entire customer base following the Pareto/NBD assumptions, whereas parameters r, α, s and β are set to match the CDNOW parameter estimates (Fader et al. 2005a), 10% of the customer base will be incorrectly classified as clumpy, despite the rejection rate of the test being set to 5%. In these cases, the events might mistakenly appear to be "clustered" due to a long period of inactivity after a customer has dropped out. For churn settings with higher frequency ($r = 0.75$, $\alpha = 5$, $s = 0.75$, $\beta = 5$, $T = 52$), the Type-I error can be as high as 35%.

Figure 9 Calculations of Metric C for Range of Gamma$(k, k\lambda)$ Distributed Events

(a) 6 Transactions
(b) 12 Transactions
However, we need to concede here that Zhang et al. (2015) primarily focus on visit-C, and in digital settings such as those studied by the authors, infrequent visits and churn might not be a substantial issue. Thus, in such (or similar) settings, the C metric actually might be a useful tool for scanning a data set before any formal model fitting. However, in the case of purchase histories with significant shares of customers who purchase less frequently ($n < 10$) and/or where customer defection is prevalent, the Pareto/GGG offers a descriptive and predictive alternative that is capable of avoiding both of the above-described shortcomings of the C measure.

6. General Discussion and Future Research

Many companies exploit the continuous influx of transaction data to make inferences about the future activity of their customers and related metrics, such as CLV and its subcomponents (Fader et al. 2005a). Yet, despite the considerable scale of data available at the overall level, little information is typically available at the individual level because a significant share of customers engages in few (if any) repeat transactions. Thus, it is common practice to pool information across customers, and probabilistic purchase models based on RF data remain the primary means for doing so (Schwartz et al. 2014).

However, by condensing historic transaction records to RF summary statistics alone, these models discard any additional customer-level information that is contained in the past timing patterns but equally easily available to the analyst. Recently, Zhang et al. (2015) question whether RF are sufficient statistics to fully summarize a customer history and posit that adding an individual-level statistic reflecting a customer’s interevent timing patterns helps to better understand CLV and its subcomponents. The authors propose a metric-based approach to extend the widely adopted RF framework, with a measure to capture clumpiness in timing patterns, and they also demonstrate its usefulness for predicting customer value. While Zhang et al. (2015) are very clear in positioning their work as a ”measurement paper”, our contribution is a ”modeling paper”. We complement their timely and important research by introducing a model-based approach, which accommodates a wide range of timing patterns (regular, random, and irregular) but adaptively pools the information across customers to attain reliable, individual-level estimates. A probabilistic modeling approach to capture regularity is not new to marketing (Chatfield and Goodhardt 1973, Morrison and Schmittlein 1988), but this research and the proposed Pareto/GGG model make two novel contributions: First, we propose adaptively pooling the sparse, individual-level information on timing patterns across customers and then leveraging heterogeneity in regularity to predict future behavior. Second, we build intuition and consistently demonstrate using an extensive simulation study and empirical applications that, particularly in a BTYD setting, accounting for regularity is highly beneficial because it facilitates making inferences regarding the customer’s latent status. In such
settings, we gain the most in terms of predictive accuracy for the managerially important segment of highly frequent but recently inactive customers. All of these benefits entail only marginal additional costs in terms of data requirements, which involve simple and sufficient summary statistics of historical transaction records.

Beyond developing the Pareto/GGG model and comparing it to the Pareto/NBD, our research in turn offers several important managerial implications. First, better predictions of important CLV components are of value to customer relationship managers per se because such improved estimates help them to prioritize customers more effectively. Second, the model results in sound customer-level estimates of the regularity parameter k and thus provide a valuable customer metric (as illustrated by Figure 8). For example, marketing managers can use this diagnostic information as a basis for segmenting customers (e.g., into irregular, random, and regular segments), as well as to score them according to their attractiveness and predictability. The corresponding R- and F-related metrics could define further subsegments. Third, managers might apply this segmentation effectively in their customer targeting and resource allocation decisions. For example, regular customer types could be targeted with cross- or up-selling options prior to their next projected visit; “overdue” regular customers should be gently reminded to return or solicited to provide customer feedback. Finally, companies operating in multiple categories could also learn from category-specific purchase timings to draw inferences concerning the (overall) activity status of their customers. For example, even customers showing random (or clumpy) ITT patterns at the firm level could reveal some aspects of regularity at the category level when examining their shopping baskets in greater detail, i.e., categories they purchase on a more regular basis. Indeed, our empirical study using online grocery data showed that there is considerable variation across categories. Model builders could leverage this information by extending our approach in an integrated multi-category purchase timing model. Managers could then benefit from the potential insights from such an approach by deriving customized marketing efforts across categories.

In this paper, our main focus has been on the accurate individual-level prediction of the expected number of future transactions, which could easily be converted into a discounted quantity to yield a net present value as suggested by Fader et al. (2005b). While (discounted) expected transactions are an important aspect of customer valuation, extending the Pareto/GGG toward a full CLV model would require a sub-model for the purchase amount per transaction. The flexibility of our hierarchical Bayesian model approach permits the incorporation of such an extension, for example by assuming a standard normal (Schmittlein and Peterson 1994), a log-normal (Borle et al. 2008), or a gamma-gamma (Colombo and Jiang 1999) sub-model for purchase amounts. With such an extension toward a fully faceted model to predict residual CLV for a customer base, relationship
managers could benefit further from the insights we have gained from applying the Pareto/GGG in our empirical studies.

To the best of our knowledge, this research represents the first systematic study demonstrating that the presence of ITT regularities improves the predictability of future purchase behavior. Regarding further research, we anticipate similar gains from our proposed gamma-distributed timing model for inferring customers’ latent activity states not only in BTYD settings but also for the broader class of hidden Markov models (Schwartz et al. 2014)\(^\text{10}\), with the promise of detecting changes between high-frequency and low-frequency purchase phases (or vice-versa) more quickly. This also includes models in which customers are allowed to make back-and-forth transitions between an active and an inactive state (e.g., an "on and off" purchasing model; see Schwartz et al. (2014)). We conjecture that modeling approaches accounting for such non-stationary repurchase behavior might be good candidates for capturing clumpy ITT patterns (interpreted as "episodes" with higher purchase propensities followed by a period with lower or even no activity) and to translate this capability into better predictions of future transactions. However, such models typically come at some additional costs because they require complete purchase histories and not merely summary statistics.

Certainly, we also have to acknowledge that, similar to any other BTYD model, the Pareto/GGG implicitly assumes stationary marketing activities in both the calibration and forecasting periods. It thus can serve as a baseline for benchmarking the impact of changes in target marketing actions (Fader et al. 2005a). It is beyond the scope of this paper but would be important yet challenging to build a model that incorporates marketing covariates, in addition to accounting for ITT regularities. The hidden Markov model-based approaches presented by Netzer et al. (2008) and Schweidel et al. (2011) offer promising starting points for endeavors to model the interplay between ITT regularity and marketing actions.

Finally, several other extensions of our research would be welcome. In particular, we call for studies that translate the general idea underlying the Pareto/GGG into a discrete-time setting. The BG/BB introduced by Fader et al. (2010) could serve as a modeling framework, although researchers would need to relax the memoryless binomial assumption for purchase occurrences. In addition, the modeling flexibility gained by an MCMC sampling scheme might facilitate links between individual-level parameters (\(\lambda\), \(\mu\) but also \(k\)) and customer-specific covariates, as well as allow for correlations between them, as demonstrated by Abe (2009). With a link between the purchase and dropout processes, the effect of ITT regularities on customers’ activity states could be studied even more thoroughly than we have done in this study.

\(^{10}\)Note that BTYD models are also constrained variants of hidden Markov models, with two states, one of which is an absorbing, inactive state.
Acknowledgments

The authors thank the editor-in-chief, the associate editor, and the anonymous reviewers for their helpful suggestions and valuable guidance throughout the review process. This research also benefited a lot from comments and input by Sandeep Conoor, Peter Fader, Nicolas Glady, Bruce Hardie, Daniel McCarthy, Udo Wagner, and the audience at the Marketing Science Conference 2014. The authors also thank Eric Bradlow and Yao Zhang for sharing their data sets.
Appendix A: Derivation of P(alive)

We provide the derivation of the probability of a customer still being alive at time T here (Schmittlein et al. 1987, Appendix 1). Let θ denote the individual-level parameters $\{k, \lambda, \mu\}$, ξ indicate the observed data $\{t_1, \ldots, t_x, T\}$, and ϕ_{T-t_x} refer to the event of no transaction occurring in $(t_x, T]$. Then, the likelihood functions in Equation (7).

$$P(\tau > T|\theta, \xi) = \frac{f_1(\xi|\theta, \tau > T)P(\tau > T|\theta)}{f_1(\xi|\theta, \tau > T)P(\tau > T|\theta) + f_2(\xi, t_x < \tau \leq T|\theta)}$$

(7)

The assumption of exponentially distributed lifetimes gives us

$$P(\tau > T|\theta) = e^{-\mu T}.$$

(8)

The likelihood functions f_1 and f_2 can be further split into independent components:

$$f_1(\xi|\theta, \tau > T) = f_3(\xi|t_x, \phi_{T-t_x}, \theta, \tau > T)f_4(t_x, \phi_{T-t_x}|\theta, \tau > T),$$

(9)

and

$$f_2(\xi, t_x < \tau \leq T|\theta) = f_5(\xi|t_x, \phi_{T-t_x}, \theta)f_0(t_x, \phi_{T-t_x}, t_x < \tau \leq T|\theta).$$

(10)

Conditional on the time of the last transaction t_x, the exact timing of the earlier transactions t_1, \ldots, t_{x-1} are independent of the subsequent timing of the dropout. Therefore, $f_3 = f_5$, and the according terms cancel out in Equation (7).

Conditional on the dropout $\tau > T$, the timing of the last transaction t_x and an observed waiting time of $T - t_x$ are independent events that can be derived separately. Because the sum of x i.i.d. variables $\Delta t_y \sim \text{gamma}(k, k\lambda)$ is a gamma-distributed random variable with an updated shape parameter $k x$, it follows that

$$f_4(t_x, \phi_{T-t_x}|\theta, \tau > T) = f(t_x|x, \theta)f(\phi_{T-t_x}|\theta) = \frac{(k\lambda)^{kx}}{\Gamma(kx)}t_x^{kx-1}e^{-k\lambda t_x}\left(1 - F_T(T-t_x|k,k\lambda)\right).$$

(11)

Similarly, f_6 can be expressed by integrating f_4 over $t_x < \tau \leq T$, such that τ is exponentially distributed:

$$f_6(t_x, \phi_{T-t_x}, t_x < \tau \leq T|\theta) = \int_{t_x}^{T} f_4(t_x, \phi_{y-t_x}|\theta, y > t_x)f(\tau = y|\theta)dy$$

$$= \frac{(k\lambda)^{kx}}{\Gamma(kx)}t_x^{kx-1}e^{-k\lambda t_x}\int_{t_x}^{T} \left(1 - F_T(y-t_x|k,k\lambda)\right)\mu e^{-\mu y}dy$$

(12)

Putting it all together, we obtain

$$P(\tau > T|k, \lambda, \mu, t_1, \ldots, t_x, T) = 1/ \left(1 + \frac{\int_{t_x}^{T} (1 - F_T(y-t_x|k,k\lambda))\mu e^{-\mu y}dy}{(1 - F_T(T-t_x|k,k\lambda))e^{-\mu T}}\right).$$

(13)

For the degenerate case of $k = 1$, this expression can be simplified to the Pareto/NBD result published by Schmittlein et al. (1987):

$$F_T(T-t_x|1, \lambda) = 1 - e^{-\lambda(T-t_x)}$$

$$P(\text{alive}) = 1/ \left(1 + \frac{\int_{t_x}^{T} e^{-\lambda(y-t_x)}\mu e^{-\mu y}dy}{e^{-\lambda(T-t_x)}e^{-\mu T}}\right)$$

$$= 1/ \left(1 - \frac{\mu}{\lambda + \mu} \frac{e^{-\lambda(T-t_x)}}{e^{-\lambda(T-t_x)}e^{-\mu T}}\right)$$

$$= 1/ \left(1 - \frac{\mu}{\lambda + \mu} (1 - e^{(T-t_x)(\lambda+\mu)})\right)$$

Platzer and Reutterer: Timing regularity helps to better predict customer activity

Marketing Science 00(0), pp. 000–000, © 0000 INFORMS
Appendix B: Further Details on Simulation Study

In total 160 data sets based on a variety of parameter settings for N, r, α, s, β, t and γ have been generated and used for assessing the predictive accuracy of the Pareto/GGG and the Pareto/NBD model. For each setting we ran four separate MCMC chains with 8000 iterations each, then retained only every 200th iteration after an initial burn-in of 2000 iterations. To check for convergence, we used the Gelman diagnostic (Gelman and Rubin 1992). Figure 10 depicts an example MCMC run, with the left hand side showing the trace plots of 4 separate MCMC chains for each of the 6 heterogeneity parameters, and the right side the corresponding sampled posterior densities. Running this configuration for 1000 customers requires 160 million individual-level parameter draws (1000 customers \times 5 parameters \times 4 chains \times 8000 iterations); for our R/Rcpp (R Core Team 2014, Eddelbuettel and Fran¸cois 2011) implementation, on a laptop equipped with a 2.5GHz quad-core Intel Core i7 chip, running the 4 chains in parallel took approximately 4 minutes. A GPU-based implementation could speed up the runtime even further (White and Porter 2014).

Table 5 and 6 report the relative as well as absolute lift in customer-level mean absolute error (MAE) for the holdout period for all the 160 simulated worlds.
Platzer and Reutterer: Timing regularity helps to better predict customer activity
Marketing Science 00(0), pp. 000–000, © 0000 INFORMS

Table 5: Relative Lift in Customer-Level MAE for Holdout Period

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>s</th>
<th>(\beta)</th>
<th>(\alpha)</th>
<th>N = 1'000</th>
<th>N = 4'000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>t = 1.6 / y = 0.4</td>
<td>0.25</td>
<td>5</td>
<td>+8%</td>
<td>+6%</td>
<td>+5%</td>
<td>+12%</td>
</tr>
<tr>
<td>mean(k) = 4</td>
<td>0.75</td>
<td>5</td>
<td>+11%</td>
<td>+10%</td>
<td>+11%</td>
<td>+19%</td>
</tr>
<tr>
<td>t = 5 / y = 2.5</td>
<td>0.25</td>
<td>5</td>
<td>+5%</td>
<td>+5%</td>
<td>+6%</td>
<td>+9%</td>
</tr>
<tr>
<td>mean(k) = 2</td>
<td>0.75</td>
<td>5</td>
<td>+4%</td>
<td>+4%</td>
<td>+17%</td>
<td>+22%</td>
</tr>
<tr>
<td>t = 6 / y = 4</td>
<td>0.25</td>
<td>5</td>
<td>+3%</td>
<td>+4%</td>
<td>+4%</td>
<td>+5%</td>
</tr>
<tr>
<td>mean(k) = 1.5</td>
<td>0.75</td>
<td>5</td>
<td>+4%</td>
<td>+4%</td>
<td>+4%</td>
<td>+5%</td>
</tr>
<tr>
<td>t = 8 / y = 8</td>
<td>0.25</td>
<td>5</td>
<td>+4%</td>
<td>0%</td>
<td>+7%</td>
<td>+9%</td>
</tr>
<tr>
<td>mean(k) = 1</td>
<td>0.75</td>
<td>5</td>
<td>+6%</td>
<td>0%</td>
<td>+7%</td>
<td>+9%</td>
</tr>
<tr>
<td>t = 17 / y = 20</td>
<td>0.25</td>
<td>5</td>
<td>0%</td>
<td>-1%</td>
<td>0%</td>
<td>-2%</td>
</tr>
<tr>
<td>mean(k) = 0.85</td>
<td>0.75</td>
<td>5</td>
<td>+1%</td>
<td>0%</td>
<td>+7%</td>
<td>+9%</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td>+4%</td>
<td>+3%</td>
<td>+7%</td>
<td>+6%</td>
</tr>
</tbody>
</table>

Table 6: Absolute Lift in Customer-Level MAE for Holdout Period

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>s</th>
<th>(\beta)</th>
<th>(\alpha)</th>
<th>N = 1'000</th>
<th>N = 4'000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>t = 1.6 / y = 0.4</td>
<td>0.25</td>
<td>5</td>
<td>+0.05</td>
<td>+0.09</td>
<td>+0.02</td>
<td>+0.11</td>
</tr>
<tr>
<td>mean(k) = 4</td>
<td>0.75</td>
<td>5</td>
<td>+0.03</td>
<td>+0.06</td>
<td>+0.01</td>
<td>+0.06</td>
</tr>
<tr>
<td>t = 5 / y = 2.5</td>
<td>0.25</td>
<td>5</td>
<td>+0.08</td>
<td>+0.19</td>
<td>+0.05</td>
<td>+0.12</td>
</tr>
<tr>
<td>mean(k) = 2</td>
<td>0.75</td>
<td>5</td>
<td>+0.08</td>
<td>+0.13</td>
<td>+0.05</td>
<td>+0.11</td>
</tr>
<tr>
<td>t = 6 / y = 4</td>
<td>0.25</td>
<td>5</td>
<td>+0.04</td>
<td>+0.08</td>
<td>+0.02</td>
<td>+0.08</td>
</tr>
<tr>
<td>mean(k) = 1.5</td>
<td>0.75</td>
<td>5</td>
<td>+0.03</td>
<td>+0.13</td>
<td>+0.02</td>
<td>+0.12</td>
</tr>
<tr>
<td>t = 8 / y = 8</td>
<td>0.25</td>
<td>5</td>
<td>+0.03</td>
<td>+0.05</td>
<td>+0.04</td>
<td>+0.07</td>
</tr>
<tr>
<td>mean(k) = 1</td>
<td>0.75</td>
<td>5</td>
<td>+0.02</td>
<td>+0.06</td>
<td>+0.00</td>
<td>+0.03</td>
</tr>
<tr>
<td>t = 17 / y = 20</td>
<td>0.25</td>
<td>5</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>mean(k) = 0.85</td>
<td>0.75</td>
<td>5</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.00</td>
<td>-0.02</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td>+0.02</td>
<td>+0.04</td>
<td>+0.02</td>
<td>+0.04</td>
</tr>
</tbody>
</table>

References

Platzer and Reutterer: Timing regularity helps to better predict customer activity. Marketing Science 00(0), pp. 000–000, © 0000 INFORMS

